The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let ⁿ be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set ⁿ is a common subgraph F of order n of each member of ⁿ, that is not properly contained in any larger common subgraph of each member of ⁿ. By well-known Dirac’s Theorem, the Dirac’s family ⁿ of the graphs of order n and minimum degree δ ≥ [n/2] has a maximal common subgraph containing Cₙ. In this note we study the problem of determining all maximal common subgraphs of the Dirac’s family...
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.
Download Results (CSV)