Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model

Jean-Michel LoubesDavy Paindaveine — 2011

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model

Jean-Michel LoubesDavy Paindaveine — 2012

ESAIM: Probability and Statistics

We consider a lacunar wavelet series function observed with an additive Brownian motion. Such functions are statistically characterized by two parameters. The first parameter governs the lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we establish the local and asymptotic normality (LAN) of the model, with respect to this couple of parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to build optimal...

Penalized estimators for non linear inverse problems

Jean-Michel LoubesCarenne Ludeña — 2010

ESAIM: Probability and Statistics

In this article we tackle the problem of inverse non linear ill-posed problems from a statistical point of view. We discuss the problem of estimating an indirectly observed function, without prior knowledge of its regularity, based on noisy observations. For this we consider two approaches: one based on the Tikhonov regularization procedure, and another one based on model selection methods for both ordered and non ordered subsets. In each case we prove consistency of the estimators and show...

Unbiased risk estimation method for covariance estimation

Hélène LescornelJean-Michel LoubesClaudie Chabriac — 2014

ESAIM: Probability and Statistics

We consider a model selection estimator of the covariance of a random process. Using the Unbiased Risk Estimation (U.R.E.) method, we build an estimator of the risk which allows to select an estimator in a collection of models. Then, we present an oracle inequality which ensures that the risk of the selected estimator is close to the risk of the oracle. Simulations show the efficiency of this methodology.

Page 1

Download Results (CSV)