Local Asymptotic Normality Property for Lacunar Wavelet Series multifractal model
Jean-Michel Loubes; Davy Paindaveine
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 69-82
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities. The Journal of Fourier Analysis and Applications4 (1998) 159–174. Zbl0914.28005MR1650933
- [2] A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities and fractal functions. In Spline functions and the theory of wavelets (Montreal, PQ, 1999) , Amer. Math. Soc. Providence, RI (1999) 315–329. Zbl1003.28007MR1676252
- [3] J.M. Aubry and S. Jaffard, Random wavelet series. Comm. Math. Phys.227 (2002) 483–514. Zbl1011.42025MR1910828
- [4] E. Bacry, A. Arneodo, U. Frisch, Y. Gagne and E. Hopfinger, Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. In Turbulence and coherent structures (Grenoble, 1989) , Kluwer Acad. Publ. Dordrecht (1989) 203–215. MR1149139
- [5] Z. Chi, Construction of stationary self-similar generalized fields by random wavelet expansion. Probab. Theory Related Fields121 (2001) 269–300. Zbl1008.60055MR1865488
- [6] A. Durand, Random wavelet series based on a tree-indexed Markov chain. Comm. Math. Phys.283 (2008) 451–477. Zbl1157.42009MR2430640
- [7] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian Motion. IEEE Trans. Inform. Theory38 (1992) 910–917. Zbl0743.60078MR1162229
- [8] F. Gamboa and J.-M. Loubes, Bayesian estimation of multifractal wavelet function. Bernoulli (2005) 34–57. Zbl1063.62047MR2132003
- [9] F. Gamboa and J.-M. Loubes, Estimation of the parameters of a multifractal wavelet function. Test16 (2007) 383–407. Zbl1119.62081MR2393660
- [10] C. Genovese and L. Wasserman, Rates of convergence for the Gaussian mixture sieve. Ann. Statist.28 (2000) 1105–1127. Zbl1105.62333MR1810921
- [11] S. Jaffard, On lacunary wavelet series. The Annals of Applied Probability10 (2000) 313–329. Zbl1063.60053MR1765214
- [12] B. Lindsay, The geometry of mixture likelihoods: a general theory. Ann. Statist.11 (1983) 86–94. Zbl0512.62005MR684866
- [13] G. McLachlan and K. Basford, Mixture models. Inference and applications to clustering. Statistics: Textbooks and Monographs 84. Marcel Dekker, Inc., New York (1988). Zbl0697.62050MR926484
- [14] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(r). Transactions of the American Mathematical Society315 (1989) 69–87. Zbl0686.42018MR1008470
- [15] D.L. McLeish and C.G. Small, Likelihood methods for the discrimination problem. Biometrika73 (1986) 397–403. Zbl0632.62057MR855899
- [16] Y. Meyer, Ondelettes et Opérateurs . Hermann (1990). Zbl0694.41037MR1085487
- [17] R.H. Riedi, M.S. Crouse, V.J. Ribeiro and R.G. Baraniuk, A multifractal wavelet model with application to network traffic. Institute of Electrical and Electronics Engineers. Transactions on Information Theory45 (1999) 992–1018. Zbl0947.94003MR1682524
- [18] F. Roueff, Almost sure haussdorff dimensions of graphs of random wavelet series. J. Fourier Analysis and App. 9 (2003). Zbl1030.60027MR1988751
- [19] A.R. Swensen, The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend. J. Multivariate Anal.16 (1985) 54–70. Zbl0563.62065MR778489
- [20] S. van de Geer, Rates of convergence for the maximum likelihood estimator in mixture models. J. Nonparametr. Statist.6 (1996) 293–310. Zbl0872.62039MR1386341
- [21] A.W. van der Vaart, Asymptotic statistics . Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998). ISBN 0-521-49603-9; 0-521-78450-6. Zbl0910.62001MR1652247