We characterize the group property of being with infinite conjugacy classes (or , infinite and of which all conjugacy classes except are infinite) for groups which are extensions of groups. We prove a general result for extensions of groups, then deduce characterizations in semi-direct products, wreath products, finite extensions, among others examples we also deduce a characterization for amalgamated products and HNN extensions. The icc property is correlated to the Theory of von Neumann algebras...
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an -generated group is amenable if and only if the density of the corresponding Cayley graph equals to . We test amenable and non-amenable...
Download Results (CSV)