Metric theorems on the estimation of integrals by sums
We prove inequalities that compare the size of an S-regulator with a product of heights of multiplicatively independent S-units. Our upper bound for the S-regulator follows from a general upper bound for the determinant of a real matrix proved by Schinzel. The lower bound for the S-regulator follows from Minkowski's theorem on successive minima and a volume formula proved by Meyer and Pajor. We establish similar upper bounds for the relative regulator of an extension l/k of number fields.
Page 1