The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul ParkJeong Ja Bae — 2000

Czechoslovak Mathematical Journal

In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .

On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type

Jong Yeoul ParkJeong Ja Bae — 2002

Czechoslovak Mathematical Journal

Let Ω be a bounded domain in n with a smooth boundary Γ . In this work we study the existence of solutions for the following boundary value problem: 2 y t 2 - M Ω | y | 2 d x Δ y - t Δ y = f ( y ) in Q = Ω × ( 0 , ) , . 1 y = 0 in Σ 1 = Γ 1 × ( 0 , ) , M Ω | y | 2 d x y ν + t y ν = g in Σ 0 = Γ 0 × ( 0 , ) , y ( 0 ) = y 0 , y t ( 0 ) = y 1 in Ω , ( 1 ) where M is a C 1 -function such that M ( λ ) λ 0 > 0 for every λ 0 and f ( y ) = | y | α y for α 0 .

Page 1

Download Results (CSV)