On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type Jong Yeoul Park; Jeong Ja Bae — 2002 Czechoslovak Mathematical Journal Let Ω be a bounded domain in ℝ n with a smooth boundary Γ . In this work we study the existence of solutions for the following boundary value problem: ∂ 2 y ∂ t 2 - M ∫ Ω | ∇ y | 2 d x Δ y - ∂ ∂ t Δ y = f ( y ) in Q = Ω × ( 0 , ∞ ) , . 1 y = 0 in Σ 1 = Γ 1 × ( 0 , ∞ ) , M ∫ Ω | ∇ y | 2 d x ∂ y ∂ ν + ∂ ∂ t ∂ y ∂ ν = g in Σ 0 = Γ 0 × ( 0 , ∞ ) , y ( 0 ) = y 0 , ∂ y ∂ t ( 0 ) = y 1 in Ω , ( 1 ) where M is a C 1 -function such that M ( λ ) ≥ λ 0 > 0 for every λ ≥ 0 and f ( y ) = | y | α y for α ≥ 0 .
On solutions of quasilinear wave equations with nonlinear damping terms Jong Yeoul Park; Jeong Ja Bae — 2000 Czechoslovak Mathematical Journal In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β ∥ ∇ u ( t , x ) ∥ 2 2 + β ∥ ∇ v ( t , x ) ∥ 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x ∈ Ω , t ≥ 0 , v t t ( t , x ) - ( α + β ∥ ∇ u ( t , x ) ∥ 2 2 + β ∥ ∇ v ( t , x ) ∥ 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x ∈ Ω , t ≥ 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x ∈ Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x ∈ Ω , u | ∂ Ω = v | ∂ Ω = 0 where q > 1 , p ≥ 1 , δ > 0 , α > 0 , β ≥ 0 , μ ∈ ℝ and Δ is the Laplacian in ℝ N .
On the existence of solutions of strongly damped nonlinear wave equations. Park, Jong Yeoul; Bae, Jeong Ja — 2000 International Journal of Mathematics and Mathematical Sciences