For X a Tikhonov space, let F(X) be the algebra of all real-valued continuous functions on X that assume only finitely many values outside some compact subset. We show that F(X) generates a compactification γX of X if and only if X has a base of open sets whose boundaries have compact neighborhoods, and we note that if this happens then γX is the Freudenthal compactification of X. For X Hausdorff and locally compact, we establish an isomorphism between the lattice of all subalgebras of  and the...
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
Si X es un álgebra de Banach no-arquimediana sobre un cuerpo F, y M es un ideal maximal de X, a diferencia de lo que ocurre en el caso complejo, el cuerpo X/M puede ser una extensión propia de F: ello conduce a la consideración de la subálgebra de Gelfand X0 de X, definida por
            X0 = {x ∈ X | x(M) ∈ F para todo ideal maximal M de X}
            donde x(M) denota la clase residual de x módulo M (Shilkret [5]).
            De igual manera se define...
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
Es bien conocido que el conjunto M de los ideales maximales de un álgebra de Banach compleja X es un espacio compacto y Hausdorff para la topología de Gelfand, y que X es isométricamente isomorfa al álgebra C(M,C) de las funciones continuas sobre M si y sólo si X es una B*-álgebra, es decir un álgebra de Banach con involución verificando ||x*x|| = ||x|| (Gelfand-Naimark). En el caso no-arquimediano, X admite tal representación si y sólo si el subespacio vectorial engendrado por {e ∈ X | e = e, ||e||...
                    
                 
                
                    
                
            
        
        
        
            
                Download Results (CSV)