The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

The relative coincidence Nielsen number

Jerzy Jezierski — 1996

Fundamenta Mathematicae

We define a relative coincidence Nielsen number N r e l ( f , g ) for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing N r e l ( f , g ) by the ordinary Nielsen numbers.

The semi-index product formula

Jerzy Jezierski — 1992

Fundamenta Mathematicae

We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula    |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| ( f b , g b : p - 1 ( b ) A ) to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and N ( f b , g b ) .

Minimal number of periodic points for smooth self-maps of S³

Grzegorz GraffJerzy Jezierski — 2009

Fundamenta Mathematicae

Let f be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topological invariant D r m [ f ] , introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of r-periodic points for all smooth maps homotopic to f. In this paper we calculate D ³ r [ f ] for all self-maps of S³.

Page 1

Download Results (CSV)