Dynamic contact problems with given friction for viscoelastic bodies
Sufficient conditions for the stresses in the threedimensional linearized coupled thermoelastic system including viscoelasticity to be continuous and bounded are derived and optimization of heating processes described by quasicoupled or partially linearized coupled thermoelastic systems with constraints on stresses is treated. Due to the consideration of heating regimes being “as nonregular as possible” and because of the well-known lack of results concerning the classical regularity of solutions...
A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain.
In this part we weaken the sufficient condition to obtain the stresses continuous and bounded in the threedimensional case, and we treat a certain coupled system.
The continuity and boundedness of the stress to the solution of the thermoelastic system is studied first for the linear case on a strip and then for the twodimensional model involving nonlinearities, noncontinuous heating regimes and isolated boundary nonsmoothnesses of the heated body.
The existence of a solution to the dynamic contact of a body having a singular memory with a rigid undeformable support is proved under some weaker assumption than that in [3].
Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.
The solvability of the contact problem is proved provided the plate is simply supported. The singular memory material is assumed. This makes it possible to get a priori estimates important for the strong convergence of gradients of velocities of solutions to the penalized problem.
A short survey of available existence results for dynamic contact problems including heat generation and heat transfer is presented.
Page 1