The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...
In this paper the method of factorization for boundary value problems of system of differential equations is generalized. The method described is successful providiny that the problem has a unique solution. Further the question of influence of errors resulting from numerical realization of the method on the solution is dealt with in the article.
The method of transfer of boundary conditions yields a universal frame into which most methods for solving boundary value problems for ordinary differential equations can be included. The purpose of this paper is to show a possibility to extend the idea of transfer of conditions to a particular twodimensional problem.
Numerical solution of linear boundary value problems for ordinary differential equations by the method of transfer of conditions consists in replacing the problem under consideration by a sequence of initial value problems. The method of transfer for systems of equations of the first order with Lebesque integrable coefficients was studied by one of the authors before. The purpose of this paper is to extend the idea of the transfer of conditions to singular boundary value problems for a linear second-order...
Download Results (CSV)