The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Distributed Nash equilibrium tracking via the alternating direction method of multipliers

Ji MaZheng YangZiqin Chen — 2023

Kybernetika

Nash equilibrium is recognized as an important solution concept in non-cooperative game theory due to its broad applicability to economics, social sciences, computer science, and engineering. In view of its importance, substantial progress has been made to seek a static Nash equilibrium using distributed methods. However, these approaches are inapplicable in dynamic environments because, in this setting, the Nash equilibrium constantly changes over time. In this paper, we propose a dynamic algorithm...

Quantized cooperative output regulation of continuous-time multi-agent systems over switching graph

Ji MaBo YangJiayu QiuZiqin ChenWenfeng Hu — 2024

Kybernetika

This paper investigates the problem of quantized cooperative output regulation of linear multi-agent systems with switching graphs. A novel dynamic encoding-decoding scheme with a finite communication bandwidth is designed. Leveraging this scheme, a distributed protocol is proposed, ensuring asymptotic convergence of the tracking error under both bounded and unbounded link failure durations. Compared with the existing quantized control work of MASs, the semi-global assumption of initial conditions...

Besicovitch subsets of self-similar sets

Ji-Hua MaZhi-Ying WenJun Wu — 2002

Annales de l’institut Fourier

Let E be a self-similar set with similarities ratio r j ( 0 j m - 1 ) and Hausdorff dimension s , let p ( p 0 , p 1 ) ... p m - 1 be a probability vector. The Besicovitch-type subset of E is defined as E ( p ) = x E : lim n 1 n k = 1 n χ j ( x k ) = p j , 0 j m - 1 , where χ j is the indicator function of the set { j } . Let α = dim H ( E ( p ) ) = dim P ( E ( p ) ) = j = 0 m - 1 p j log p j j = 0 m - 1 p i log r j and g be a gauge function, then we prove in this paper:(i) If p = ( r 0 s , r 1 s , , r m - 1 s ) , then s ( E ( p ) ) = s ( E ) , 𝒫 s ( E ( p ) ) = 𝒫 s ( E ) , moreover both of s ( E ) and 𝒫 s ( E ) are finite positive;(ii) If p is a positive probability vector other than ( r 0 s , r 1 s , , r m - 1 s ) , then the gauge functions can be partitioned as follows ...

Page 1

Download Results (CSV)