A note on the strong maximal operator on ℝⁿ
We prove that for f ∈ L ln⁺L(ℝⁿ) with compact support, there is a g ∈ L ln⁺L(ℝⁿ) such that (a) g and f are equidistributed, (b) for any measurable set E of finite measure.
We prove that for f ∈ L ln⁺L(ℝⁿ) with compact support, there is a g ∈ L ln⁺L(ℝⁿ) such that (a) g and f are equidistributed, (b) for any measurable set E of finite measure.
Fefferman-Stein, Wainger and Sjölin proved optimal boundedness for certain oscillating multipliers on . In this article, we prove an analogue of their result on a compact Lie group.
We give some rather weak sufficient condition for boundedness of the Marcinkiewicz integral operator on the product spaces (1 < p < ∞), which improves and extends some known results.
Page 1