The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Solving conics over function fields

Mark van HoeijJohn Cremona — 2006

Journal de Théorie des Nombres de Bordeaux

Let F be a field whose characteristic is not  2 and K = F ( t ) . We give a simple algorithm to find, given a , b , c K * , a nontrivial solution in  K (if it exists) to the equation a X 2 + b Y 2 + c Z 2 = 0 . The algorithm requires, in certain cases, the solution of a similar equation with coefficients in F ; hence we obtain a recursive algorithm for solving diagonal conics over ( t 1 , , t n ) (using existing algorithms for such equations over  ) and over 𝔽 q ( t 1 , , t n ) .

On a theorem of Mestre and Schoof

John E. CremonaAndrew V. Sutherland — 2010

Journal de Théorie des Nombres de Bordeaux

A well known theorem of Mestre and Schoof implies that the order of an elliptic curve E over a prime field 𝔽 q can be uniquely determined by computing the orders of a few points on E and its quadratic twist, provided that q > 229 . We extend this result to all finite fields with q > 49 , and all prime fields with q > 29 .

Page 1

Download Results (CSV)