The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 22

Showing per page

Order by Relevance | Title | Year of publication

Dimension in algebraic frames

Jorge Martinez — 2006

Czechoslovak Mathematical Journal

In an algebraic frame L the dimension, dim ( L ) , is defined, as in classical ideal theory, to be the maximum of the lengths n of chains of primes p 0 < p 1 < < p n , if such a maximum exists, and otherwise. A notion of “dominance” is then defined among the compact elements of L , which affords one a primefree way to compute dimension. Various subordinate dimensions are considered on a number of frame quotients of L , including the frames d L and z L of d -elements and z -elements, respectively. The more concrete illustrations...

Archimedean frames, revisited

Jorge Martinez — 2008

Commentationes Mathematicae Universitatis Carolinae

This paper extends the notion of an archimedean frame to frames which are not necessarily algebraic. The new notion is called and is . Assuming the Axiom of Choice and for compact normal algebraic frames, the new and the old coincide. There is a subfunctor from the category of compact normal frames with skeletal maps with joinfit values, which is almost a coreflection. Conditions making it so are briefly discussed. The concept of an element arises naturally, and the join of suitably chosen infinitesimals...

C * -points vs P -points and P -points

Jorge MartinezWarren Wm. McGovern — 2022

Commentationes Mathematicae Universitatis Carolinae

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space is a C * -point....

Dimension in algebraic frames, II: Applications to frames of ideals in C ( X )

Jorge MartinezEric R. Zenk — 2005

Commentationes Mathematicae Universitatis Carolinae

This paper continues the investigation into Krull-style dimensions in algebraic frames. Let L be an algebraic frame. dim ( L ) is the supremum of the lengths k of sequences p 0 < p 1 < < p k of (proper) prime elements of L . Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of L in terms of the dimensions of certain boundary quotients of L . This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily...

Algebras and spaces of dense constancies

Angelo BellaJorge MartinezScott D. Woodward — 2001

Czechoslovak Mathematical Journal

A DC-space (or space of dense constancies) is a Tychonoff space X such that for each f C ( X ) there is a family of open sets { U i i I } , the union of which is dense in X , such that f , restricted to each U i , is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean f -algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions...

Spaces X in which all prime z -ideals of C ( X ) are minimal or maximal

Melvin HenriksenJorge MartinezGrant R. Woods — 2003

Commentationes Mathematicae Universitatis Carolinae

Quasi P -spaces are defined to be those Tychonoff spaces X such that each prime z -ideal of C ( X ) is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of P -spaces. The compact quasi P -spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi P -spaces is given. If X is a cozero-complemented space and every nowhere dense zeroset...

Page 1 Next

Download Results (CSV)