Spaces in which all prime -ideals of are minimal or maximal
Melvin Henriksen; Jorge Martinez; Grant R. Woods
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 2, page 261-294
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHenriksen, Melvin, Martinez, Jorge, and Woods, Grant R.. "Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 261-294. <http://eudml.org/doc/249184>.
@article{Henriksen2003,
abstract = {Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^\{-1\}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$.},
author = {Henriksen, Melvin, Martinez, Jorge, Woods, Grant R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasi $P$-space; $P$-space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality; quasi -space; -space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality},
language = {eng},
number = {2},
pages = {261-294},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal},
url = {http://eudml.org/doc/249184},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Henriksen, Melvin
AU - Martinez, Jorge
AU - Woods, Grant R.
TI - Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 261
EP - 294
AB - Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^{-1}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$.
LA - eng
KW - quasi $P$-space; $P$-space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality; quasi -space; -space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality
UR - http://eudml.org/doc/249184
ER -
References
top- Balcar B., Simon P., Vojtáš P., 10.1090/S0002-9947-1981-0621987-0, Trans. Amer. Math. Soc. 267 (1981), 265-283. (1981) MR0621987DOI10.1090/S0002-9947-1981-0621987-0
- Ball R.N., Hager A.W., Archimedean kernel-distinguishing extensions of archimedean -groups with weak unit, Indian J. Math. 29 (3) (1987), 351-368. (1987) MR0971646
- Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés, Lecture Notes in Math. 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0384.06022MR0552653
- Blair R.L., 10.4153/CJM-1976-068-9, Canad. J. Math. 28 (1976), 673-690. (1976) Zbl0359.54009MR0420542DOI10.4153/CJM-1976-068-9
- Burke D., Closed Mappings, Surveys in Gen. Topology, Academic Press, New York, 1980, pp.1-32. Zbl0476.54017MR0564098
- Comfort W., Hager A., 10.1090/S0002-9947-1970-0263016-X, Trans. Amer. Math. Soc. 150 (1970), 619-631. (1970) MR0263016DOI10.1090/S0002-9947-1970-0263016-X
- Conrad P., Martinez J., 10.1016/0019-3577(90)90019-J, Indag. Math. (N.S.) 1 (1990), 281-297. (1990) Zbl0735.06006MR1075880DOI10.1016/0019-3577(90)90019-J
- Darnel M., Theory of Lattice-Ordered Groups, Pure & Appl. Math. 187, Marcel Dekker, New York, 1995. Zbl0810.06016MR1304052
- Dummit D.S., Foote R.M., Abstract Algebra, 2nd edition, Prentice Hall, 1999. Zbl1037.00003MR1138725
- van Douwen E., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125-139. (1993) Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
- van Douwen E., Pryzmusiński T., 10.4064/fm-102-3-229-234, 52 (1979), 229-234. (1979) MR0532957DOI10.4064/fm-102-3-229-234
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Gillman L., Jerison M., 10.1215/ijm/1255456059, Illinois J. Math. 4 (1960), 425-436. (1960) Zbl0098.30701MR0124727DOI10.1215/ijm/1255456059
- Gillman L., Jerison M., Rings of Continuous Functions, Grad. Texts Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
- Hager A., Martinez J., 10.4153/CJM-1993-054-6, Canad. J. Math. 45 (1993), 977-996. (1993) Zbl0795.06017MR1239910DOI10.4153/CJM-1993-054-6
- Henriksen M., Jerison M., 10.1090/S0002-9947-1965-0194880-9, Trans. Amer. Math. Soc. 115 (1965), 110-130. (1965) Zbl0147.29105MR0194880DOI10.1090/S0002-9947-1965-0194880-9
- Henriksen M., Larson S., Martinez J., Woods R.G., 10.1090/S0002-9947-1994-1239640-0, Trans. Amer. Math. Soc. 345 1 (September 1994), 195-221. (September 1994) Zbl0817.06014MR1239640DOI10.1090/S0002-9947-1994-1239640-0
- Henriksen M., Vermeer J., Woods R.G., Quasi- covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (2) (1987), 779-803. (1987) Zbl0653.54025MR0902798
- Kimber C., 10.1016/S0022-4049(00)00061-X, J. Pure Appl. Algebra 158 (2001), 197-223. (2001) Zbl0987.06017MR1822841DOI10.1016/S0022-4049(00)00061-X
- Koppelberg S., Handbook of Boolean Algebras, I., J.D. Monk, Ed., with R. Bonnet; Elsevier, Amsterdam-New York-Oxford-Tokyo, 1989. MR0991565
- Larson S., 10.1080/00927879508825545, Comm. Algebra 23 (1995), 14 5461-5481. (1995) Zbl0847.06007MR1363616DOI10.1080/00927879508825545
- Larson S., Quasi-normal -rings, in Proc. Ord. Alg. Structures (Curaçao, 1995), W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.261-275. Zbl0872.06013MR1445116
- Larson S., 10.1080/00927879708826092, Comm. Algebra 25 (1997), 3859-3888. (1997) Zbl0952.06026MR1481572DOI10.1080/00927879708826092
- Levy R., 10.4153/CJM-1977-030-7, Canad. J. Math. 29 (1977), 284-288. (1977) Zbl0342.54032MR0464203DOI10.4153/CJM-1977-030-7
- Levy R., Rice M., 10.4064/cm-44-2-227-240, Colloq. Math. 44 (1981), 227-240. (1981) MR0652582DOI10.4064/cm-44-2-227-240
- Mandelker M., 10.2140/pjm.1969.28.615, Pacific J. Math. 28 (1969), 615-621. (1969) Zbl0172.47903MR0240782DOI10.2140/pjm.1969.28.615
- Mioduszewski J., Rudolph L., -closed and extremally disconnected Hausdorff spaces, Dissertationes Math. LXVI (1969, Warsaw). (1969, Warsaw)
- Montgomery R., 10.1090/S0002-9947-1970-0256174-4, Trans. Amer. Math. Soc. 147 (1970), 367-380. (1970) Zbl0222.54014MR0256174DOI10.1090/S0002-9947-1970-0256174-4
- Montgomery R., The mapping of prime -ideals, Symp. Math. 17 (1973), 113-124. (1973) MR0440495
- Mrowka S., Some comments on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. (1970) MR0268852
- Oxtoby J., Measure and Category, 2nd edition, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0435.28011MR0584443
- Porter J., Woods R.g., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl0652.54016MR0918341
- van Rooij A., Shikof W., A Second Course in Real Analysis, Cambridge Univ. Press, Cambridge, England, 1982.
- Semadeni Z., Sur les ensembles clairsemés, Rozprawy Mat. 19 (1959), Warsaw. (1959) Zbl0137.16002MR0107849
- Semadeni Z., Banach Spaces of Continuous Functions, Polish Scientific Publishers, Warsaw, 1971. Zbl0478.46014MR0296671
- Telgársky R., Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci. 16 (1968), 567-572. (1968) MR0235517
- Veksler A.G., -points, -sets and -spaces. A new class of order-continuous measures and functionals, Soviet Math. Dokl. 14 (1973), 1440-1445. (1973) MR0341447
- Weir M., Hewitt-Nachbin Spaces, North Holland Publ. Co., Amsterdam, 1975. Zbl0314.54002MR0514909
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.