Spaces X in which all prime z -ideals of C ( X ) are minimal or maximal

Melvin Henriksen; Jorge Martinez; Grant R. Woods

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 2, page 261-294
  • ISSN: 0010-2628

Abstract

top
Quasi P -spaces are defined to be those Tychonoff spaces X such that each prime z -ideal of C ( X ) is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of P -spaces. The compact quasi P -spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi P -spaces is given. If X is a cozero-complemented space and every nowhere dense zeroset is a z -embedded P -space, then X is a quasi P -space. Conversely, if X is a quasi P -space and F is a nowhere dense z -embedded zeroset, then F is a P -space. On the other hand, there are examples of countable quasi P -spaces with no P -points at all. If a product X × Y is normal and quasi P , then one of the factors must be a P -space. Conversely, if one of the factors is a compact quasi P -space and the other a P -space then the product is quasi P . If X is normal and X and Y are cozero-complemented spaces and f : X Y is a closed continuous surjection which has the property that f - 1 ( Z ) is nowhere dense for each nowhere dense zeroset Z , then if X is quasi P , so is Y . The converse fails even with more stringent assumptions on the map f . The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi P -spaces is always quasi P .

How to cite

top

Henriksen, Melvin, Martinez, Jorge, and Woods, Grant R.. "Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal." Commentationes Mathematicae Universitatis Carolinae 44.2 (2003): 261-294. <http://eudml.org/doc/249184>.

@article{Henriksen2003,
abstract = {Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^\{-1\}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$.},
author = {Henriksen, Melvin, Martinez, Jorge, Woods, Grant R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasi $P$-space; $P$-space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality; quasi -space; -space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality},
language = {eng},
number = {2},
pages = {261-294},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal},
url = {http://eudml.org/doc/249184},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Henriksen, Melvin
AU - Martinez, Jorge
AU - Woods, Grant R.
TI - Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 2
SP - 261
EP - 294
AB - Quasi $P$-spaces are defined to be those Tychonoff spaces $X$ such that each prime $z$-ideal of $C(X)$ is either minimal or maximal. This article is devoted to a systematic study of these spaces, which are an obvious generalization of $P$-spaces. The compact quasi $P$-spaces are characterized as the compact spaces which are scattered and of Cantor-Bendixson index no greater than 2. A thorough account of locally compact quasi $P$-spaces is given. If $X$ is a cozero-complemented space and every nowhere dense zeroset is a $z$-embedded $P$-space, then $X$ is a quasi $P$-space. Conversely, if $X$ is a quasi $P$-space and $F$ is a nowhere dense $z$-embedded zeroset, then $F$ is a $P$-space. On the other hand, there are examples of countable quasi $P$-spaces with no $P$-points at all. If a product $X\times Y$ is normal and quasi $P$, then one of the factors must be a $P$-space. Conversely, if one of the factors is a compact quasi $P$-space and the other a $P$-space then the product is quasi $P$. If $X$ is normal and $X$ and $Y$ are cozero-complemented spaces and $f:X\longrightarrow Y$ is a closed continuous surjection which has the property that $f^{-1}(Z)$ is nowhere dense for each nowhere dense zeroset $Z$, then if $X$ is quasi $P$, so is $Y$. The converse fails even with more stringent assumptions on the map $f$. The paper then closes with a number of open questions, amongst which the most glaring is whether the free union of quasi $P$-spaces is always quasi $P$.
LA - eng
KW - quasi $P$-space; $P$-space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality; quasi -space; -space; scattered space; Cantor-Bendixson derivatives; nodec space; quasinormality
UR - http://eudml.org/doc/249184
ER -

References

top
  1. Balcar B., Simon P., Vojtáš P., 10.1090/S0002-9947-1981-0621987-0, Trans. Amer. Math. Soc. 267 (1981), 265-283. (1981) MR0621987DOI10.1090/S0002-9947-1981-0621987-0
  2. Ball R.N., Hager A.W., Archimedean kernel-distinguishing extensions of archimedean -groups with weak unit, Indian J. Math. 29 (3) (1987), 351-368. (1987) MR0971646
  3. Bigard A., Keimel K., Wolfenstein S., Groupes et Anneaux Réticulés, Lecture Notes in Math. 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0384.06022MR0552653
  4. Blair R.L., 10.4153/CJM-1976-068-9, Canad. J. Math. 28 (1976), 673-690. (1976) Zbl0359.54009MR0420542DOI10.4153/CJM-1976-068-9
  5. Burke D., Closed Mappings, Surveys in Gen. Topology, Academic Press, New York, 1980, pp.1-32. Zbl0476.54017MR0564098
  6. Comfort W., Hager A., 10.1090/S0002-9947-1970-0263016-X, Trans. Amer. Math. Soc. 150 (1970), 619-631. (1970) MR0263016DOI10.1090/S0002-9947-1970-0263016-X
  7. Conrad P., Martinez J., 10.1016/0019-3577(90)90019-J, Indag. Math. (N.S.) 1 (1990), 281-297. (1990) Zbl0735.06006MR1075880DOI10.1016/0019-3577(90)90019-J
  8. Darnel M., Theory of Lattice-Ordered Groups, Pure & Appl. Math. 187, Marcel Dekker, New York, 1995. Zbl0810.06016MR1304052
  9. Dummit D.S., Foote R.M., Abstract Algebra, 2nd edition, Prentice Hall, 1999. Zbl1037.00003MR1138725
  10. van Douwen E., 10.1016/0166-8641(93)90145-4, Topology Appl. 51 (1993), 125-139. (1993) Zbl0845.54028MR1229708DOI10.1016/0166-8641(93)90145-4
  11. van Douwen E., Pryzmusiński T., 10.4064/fm-102-3-229-234, 52 (1979), 229-234. (1979) MR0532957DOI10.4064/fm-102-3-229-234
  12. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  13. Gillman L., Jerison M., 10.1215/ijm/1255456059, Illinois J. Math. 4 (1960), 425-436. (1960) Zbl0098.30701MR0124727DOI10.1215/ijm/1255456059
  14. Gillman L., Jerison M., Rings of Continuous Functions, Grad. Texts Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
  15. Hager A., Martinez J., 10.4153/CJM-1993-054-6, Canad. J. Math. 45 (1993), 977-996. (1993) Zbl0795.06017MR1239910DOI10.4153/CJM-1993-054-6
  16. Henriksen M., Jerison M., 10.1090/S0002-9947-1965-0194880-9, Trans. Amer. Math. Soc. 115 (1965), 110-130. (1965) Zbl0147.29105MR0194880DOI10.1090/S0002-9947-1965-0194880-9
  17. Henriksen M., Larson S., Martinez J., Woods R.G., 10.1090/S0002-9947-1994-1239640-0, Trans. Amer. Math. Soc. 345 1 (September 1994), 195-221. (September 1994) Zbl0817.06014MR1239640DOI10.1090/S0002-9947-1994-1239640-0
  18. Henriksen M., Vermeer J., Woods R.G., Quasi- F covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (2) (1987), 779-803. (1987) Zbl0653.54025MR0902798
  19. Kimber C., 10.1016/S0022-4049(00)00061-X, J. Pure Appl. Algebra 158 (2001), 197-223. (2001) Zbl0987.06017MR1822841DOI10.1016/S0022-4049(00)00061-X
  20. Koppelberg S., Handbook of Boolean Algebras, I., J.D. Monk, Ed., with R. Bonnet; Elsevier, Amsterdam-New York-Oxford-Tokyo, 1989. MR0991565
  21. Larson S., 10.1080/00927879508825545, Comm. Algebra 23 (1995), 14 5461-5481. (1995) Zbl0847.06007MR1363616DOI10.1080/00927879508825545
  22. Larson S., Quasi-normal f -rings, in Proc. Ord. Alg. Structures (Curaçao, 1995), W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.261-275. Zbl0872.06013MR1445116
  23. Larson S., 10.1080/00927879708826092, Comm. Algebra 25 (1997), 3859-3888. (1997) Zbl0952.06026MR1481572DOI10.1080/00927879708826092
  24. Levy R., 10.4153/CJM-1977-030-7, Canad. J. Math. 29 (1977), 284-288. (1977) Zbl0342.54032MR0464203DOI10.4153/CJM-1977-030-7
  25. Levy R., Rice M., 10.4064/cm-44-2-227-240, Colloq. Math. 44 (1981), 227-240. (1981) MR0652582DOI10.4064/cm-44-2-227-240
  26. Mandelker M., 10.2140/pjm.1969.28.615, Pacific J. Math. 28 (1969), 615-621. (1969) Zbl0172.47903MR0240782DOI10.2140/pjm.1969.28.615
  27. Mioduszewski J., Rudolph L., H -closed and extremally disconnected Hausdorff spaces, Dissertationes Math. LXVI (1969, Warsaw). (1969, Warsaw) 
  28. Montgomery R., 10.1090/S0002-9947-1970-0256174-4, Trans. Amer. Math. Soc. 147 (1970), 367-380. (1970) Zbl0222.54014MR0256174DOI10.1090/S0002-9947-1970-0256174-4
  29. Montgomery R., The mapping of prime z -ideals, Symp. Math. 17 (1973), 113-124. (1973) MR0440495
  30. Mrowka S., Some comments on the author's example of a non-R-compact space, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. (1970) MR0268852
  31. Oxtoby J., Measure and Category, 2nd edition, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0435.28011MR0584443
  32. Porter J., Woods R.g., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl0652.54016MR0918341
  33. van Rooij A., Shikof W., A Second Course in Real Analysis, Cambridge Univ. Press, Cambridge, England, 1982. 
  34. Semadeni Z., Sur les ensembles clairsemés, Rozprawy Mat. 19 (1959), Warsaw. (1959) Zbl0137.16002MR0107849
  35. Semadeni Z., Banach Spaces of Continuous Functions, Polish Scientific Publishers, Warsaw, 1971. Zbl0478.46014MR0296671
  36. Telgársky R., Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci. 16 (1968), 567-572. (1968) MR0235517
  37. Veksler A.G., P ' -points, P ' -sets and P ' -spaces. A new class of order-continuous measures and functionals, Soviet Math. Dokl. 14 (1973), 1440-1445. (1973) MR0341447
  38. Weir M., Hewitt-Nachbin Spaces, North Holland Publ. Co., Amsterdam, 1975. Zbl0314.54002MR0514909

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.