Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Rational equivalence on some families of plane curves

Josep M. MiretSebastián Xambó Descamps — 1994

Annales de l'institut Fourier

If V d , δ denotes the variety of irreducible plane curves of degree d with exactly δ nodes as singularities, Diaz and Harris (1986) have conjectured that Pic ( V d , δ ) is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that Pic ( V d , 1 ) is a finite group, so that the conjecture holds for δ = 1 . Actually the order of Pic ( V d , 1 ) is 6 ( d - 2 ) d 2 - 3 d + 1 ) , the group being cyclic if d is odd and the product of 2 and a cyclic group of order 3 ( d - 2 ) ( d 2 - 3 d + 1 ) if d is even.

Generalization of Vélu's formulae for isogenies between elliptic curves.

Josep M. Miret BioscaRamiro MorenoAnna Rio — 2007

Publicacions Matemàtiques

Given an elliptic curve E and a finite subgroup G, Vélu's formulae concern to a separable isogeny IG: E → E' with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P+G as the difference between the abscissa of IG(P) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstrass...

Volcanoes of l-isogenies of elliptic curves over finite fields: The case l=3.

This paper is devoted to the study of the volcanoes of ℓ-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the ℓ-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case ℓ = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results...

Page 1

Download Results (CSV)