«Vanishing theorem» pour un fibré vectoriel holomorphe positif de rang quelconque
L’espace de modules des faisceaux semi-stables de rang 2, de classes de Chern (0,3) sur le plan projectif est une variété projective irréductible et lisse de dimension 9. Dans , les points qui ne proviennent pas d’un faisceau localement libre constituent une hypersurface . Dans cet article, nous montrons que toute surface complété de rencontre la frontière , autrement dit qu’il n’existe pas de famille de fibrés vectoriels paramétrée par une surface complète de . La démonstration repose...
Page 1