Fibrés de Higgs et systèmes locaux

Joseph Le Potier

Séminaire Bourbaki (1990-1991)

  • Volume: 33, page 221-268
  • ISSN: 0303-1179

How to cite

top

Le Potier, Joseph. "Fibrés de Higgs et systèmes locaux." Séminaire Bourbaki 33 (1990-1991): 221-268. <http://eudml.org/doc/110139>.

@article{LePotier1990-1991,
author = {Le Potier, Joseph},
journal = {Séminaire Bourbaki},
keywords = {Higgs bundle; linear representation of the fundamental group; coarse moduli spaces},
language = {fre},
pages = {221-268},
publisher = {Société Mathématique de France},
title = {Fibrés de Higgs et systèmes locaux},
url = {http://eudml.org/doc/110139},
volume = {33},
year = {1990-1991},
}

TY - JOUR
AU - Le Potier, Joseph
TI - Fibrés de Higgs et systèmes locaux
JO - Séminaire Bourbaki
PY - 1990-1991
PB - Société Mathématique de France
VL - 33
SP - 221
EP - 268
LA - fre
KW - Higgs bundle; linear representation of the fundamental group; coarse moduli spaces
UR - http://eudml.org/doc/110139
ER -

References

top
  1. [1] M.F. Atiyah et R. Bott. The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. London A308 (1982), 523-615. Zbl0509.14014MR702806
  2. [2] F.A. Bogomolov. Holomorphic tensors and vector bundles on projectives varieties, Math. USSR Izvestija13 (1979), 499-555. Zbl0439.14002
  3. [3] R. Bott and S.S. Chern. Hermitian vector bundles and the equidistribution of the zeros of their holomorphic cross-sections, Acta Mathematica114 (1968), 71-112. Zbl0148.31906MR185607
  4. [4] K. Corlette. Flat G-bundles with canonical metrics, J. Diff. Geom.28 (1988), 361-382. Zbl0676.58007MR965220
  5. [5] P. Deligne. Equations différentielles à points singuliers réguliers, Lecture Notes in Maths163 (1970) Springer. Zbl0244.14004MR417174
  6. [6] S.K. Donaldson. Infinite determinants, stable bundles and curvature, Duke Math. Journal54.1 (1987), 231-247. Zbl0627.53052MR885784
  7. [7] S.K. Donaldson. Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc.(3)50 (1985), 1-26. Zbl0529.53018MR765366
  8. [8] S.K. Donaldson. Twisted harmonic maps and self-duality equations, Proc. London Math. Soc55 (1987), 127-131. Zbl0634.53046MR887285
  9. [9] S.K. Donaldson. A new proof of a theorem of Narasimhan and Se- shadri, J. Differential Geom.18 (1983), 269-277. Zbl0504.49027MR710055
  10. [10] J. Eells et J.H. Sampson. Harmonic mappings of Riemannian manifolds, Amer. J. of Math.86 (1964), 109-160. Zbl0122.40102MR164306
  11. [11] H. Flenner. Restrictions of semistable bundles on projective varieties, Comment. Math. Helvetici59 (1984), 635-650. Zbl0599.14015MR780080
  12. [12] D. Gieseker. On the moduli of vector bundles on an algebraic surface, Ann. of Math.106 (1970), 45-60. Zbl0381.14003MR466475
  13. [13] W. Goldman et J. Millson. The deformation theory of representation of fundamental groups of compact Kähler manifolds, Preprint, University of Maryland. Zbl0678.53059MR929091
  14. [14] P.A. Griffiths. Periods of integrals on algebraic manifolds III, Publ. Math. I.H.E.S.38 (1970), 125-180. Zbl0212.53503MR282990
  15. [15] A. Grothendieck. Techniques de construction et théorèmes d'existence en géométrie algébrique,IV : les schémas de Hilbert. Séminaire Bourbaki, Exposé 221 (1960-61). Zbl0236.14003
  16. [16] R.S. Hamilton. Harmonic mappings of riemannian manifolds, Lecture Notes in math.471 (1975) Springer. Zbl0308.35003
  17. [17] R. Hartshorne. Algebraic geometry, Springer (1977). Zbl0367.14001MR463157
  18. [18] A. Hirschowitz. Sur la restriction des faisceaux semi-stables , Ann. Sc. Ec. Norm. Sup.14 (1980), 199-207. Zbl0474.14007MR631750
  19. [19] N.J. Hitchin. The self-duality equations on a Riemann surface, Proc. London, Math. Soc.(3)55 (1987), 59-126. Zbl0634.53045MR887284
  20. [20] N.J. Hitchin. Stable bundles and integrable systems, Duke Math. J.54 (1987), 91-114. Zbl0627.14024MR885778
  21. [21] M. Lübke. Chern classen von Hermite-Einstein-Vecktorbündeln, Math. Annalen260 (1982), 133-141 Zbl0471.53043MR664372
  22. [22] C. Margerin. Fibrés stables et métriques d'Hermite-Einstein, d'après S.K. Donaldson, K.K. Uhlenbeck et S. T. Yau, Séminaire Bourbaki, Exposé 683 (1987). Zbl0637.53080MR936859
  23. [23] M. Maruyama. On boundedness of families of torsion free sheaves, J. Math. Kyoto University21-4 (1981), 673-701. Zbl0495.14009MR637512
  24. [24] M. Maruyama. Moduli of stable sheaves, J. Math. Kyoto University, I 17-1 (1977) 91-126; II 18-3 (1978) 557-614. Zbl0395.14006
  25. [25] V.B. Mehta et A. Ramanathan. Semistable sheaves on projective varieties and their restriction to curves, Math. Annalen258 (1982), 213-224 Zbl0473.14001MR649194
  26. [26] V.B. Mehta et A. Ramanathan. Restriction of stable sheaves and representation of the fundamental group, Invent. math.77 (1984), 163-172 Zbl0525.55012MR751136
  27. [27] D. Mumford et J. Fogarty. Geometric invariant theory, Springer (1982). Zbl0504.14008MR719371
  28. [28] M.S. Narasimhan et C.S. Seshadri. Stable and unitary vector bundles on compact Riemann surfaces, Ann. of maths82 (1965), 540-567. Zbl0171.04803MR184252
  29. [29] C.T. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, Journal of the Amer. Math. Soc.1 (1988), 867-918. Zbl0669.58008MR944577
  30. [30] C.T. Simpson. Higgs bundles and local systems, Preprint, Princeton University. Zbl0814.32003MR1179076
  31. [31] C.T. Simpson. Moduli of representations of the fundamental group of a smooth variety, Preprint, Princeton University. Zbl0891.14006
  32. [32] C.T. Simpson. Non abelian Hodge theory, Preprint, Princeton University. 
  33. [33] C.T. Simpson. The ubiquity of variations of Hodge structures, Preprint, Princeton University. Zbl0770.14014MR1141208
  34. [34] C.T. Simpson. Harmonic bundles on non compact curves, Preprint, Princeton University. 
  35. [35] C.T. Simpson. Report on twistor space and the mixed Hodge structure on the fundamental group, Preprint, Princeton University. 
  36. [36] K.K. Uhlenbeck et S.T. Yau. On the existence of hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math.39-S (1986), 257-293. Zbl0615.58045MR861491
  37. [37] A. Weil. Variétés kählériennes, Paris, Hermann (1958). Zbl0137.41103MR111056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.