The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Coplanar control of a satellite around the earth

Jean-Baptiste CaillauJoseph Noailles — 2001

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.

Coplanar control of a satellite around the Earth

Jean-Baptiste CaillauJoseph Noailles — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.

Page 1

Download Results (CSV)