Coplanar control of a satellite around the earth

Jean-Baptiste Caillau; Joseph Noailles

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 239-258
  • ISSN: 1292-8119

Abstract

top
We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.

How to cite

top

Caillau, Jean-Baptiste, and Noailles, Joseph. "Coplanar control of a satellite around the earth." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 239-258. <http://eudml.org/doc/90593>.

@article{Caillau2001,
abstract = {We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.},
author = {Caillau, Jean-Baptiste, Noailles, Joseph},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {celestial mechanics; minimum time problems; geometric control; parametric optimal control; minimum time transfer; controllability; convergence},
language = {eng},
pages = {239-258},
publisher = {EDP-Sciences},
title = {Coplanar control of a satellite around the earth},
url = {http://eudml.org/doc/90593},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Caillau, Jean-Baptiste
AU - Noailles, Joseph
TI - Coplanar control of a satellite around the earth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 239
EP - 258
AB - We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.
LA - eng
KW - celestial mechanics; minimum time problems; geometric control; parametric optimal control; minimum time transfer; controllability; convergence
UR - http://eudml.org/doc/90593
ER -

References

top
  1. [1] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors. SIAM J. Control Optim. 33 (1995) 1279–1311. Zbl0882.49024
  2. [2] B. Bonnard and G. Launay, Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407–467. Zbl0914.93043
  3. [3] J.B. Caillau, Contribution à l’étude du contrôle en temps minimal des transferts orbitaux. Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, France (2000). 
  4. [4] J.B. Caillau and J. Noailles, Continuous optimal control sensitivity analysis with AD, in Proc. of the 3rd International Conference on Automatic Differentiation. INRIA Nice, France (2000). Zbl0991.70019
  5. [5] J.B. Caillau and J. Noailles, Sensitivity analysis for time optimal orbit transfer. Optimization 49 (2001) 327–350. Zbl0991.70019
  6. [6] L. Cesari, Optimization Theory and Applications. Springer-Verlag (1983). Zbl0506.49001MR688142
  7. [7] C. Ferrier and R. Epenoy, Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica (to appear). 
  8. [8] M. Fliess, Variations sur la notion de contrôlabilité, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl0992.93002MR1799559
  9. [9] S. Geffroy, R. Epenoy and J. Noailles, Averaging techniques in optimal control for orbital low-thrust transfers and rendez-vous computation, in 11 t h International Astrodynamics Symposium. Gifu, Japan (1996) 166–171. 
  10. [10] M. Godbillon, Géométrie différentielle et mécanique analytique. Hermann, Paris (1985). Zbl0653.53001
  11. [11] V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). Zbl0940.93005MR1425878
  12. [12] K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205–227. Zbl0905.49012
  13. [13] K. Malanowski and H. Maurer, Sensitivity analysis for parametric optimal control problems with control-state constraints. Comp. Optim. Appl. 5 (1996) 253–283. Zbl0864.49020
  14. [14] J. Noailles and J. Gergaud, A new method for the time optimal control problem and its application to low thrust orbital transfer. Workshop on low thrust transfers, Toulouse, France, French Space Agency, CNES (2000). 
  15. [15] J. Noailles and T.C. Le, Contrôle en temps minimal et transfert orbital à faible poussée. Équations aux dérivées partielles et applications, articles in honour of J.L. Lions for his 70 th birthday. Gauthier-Villars (1998) 705–724. Zbl0919.49023
  16. [16] H.J. Sussmann, Geometry and Optimal Control, in Mathematical Control Theory, Dedicated to Roger W. Brockett on his 60 th birthday, edited by J. Baillieul and J.C. Willems. Springer-Verlag (1998). Zbl1067.49500MR1661472
  17. [17] H.J. Sussmann, Résultats récents sur les courbes optimales, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl1020.49020MR1799558
  18. [18] O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse, France (1987). 

NotesEmbed ?

top

You must be logged in to post comments.