Coplanar control of a satellite around the earth

Jean-Baptiste Caillau; Joseph Noailles

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 239-258
  • ISSN: 1292-8119

Abstract

top
We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.

How to cite

top

Caillau, Jean-Baptiste, and Noailles, Joseph. "Coplanar control of a satellite around the earth." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 239-258. <http://eudml.org/doc/90593>.

@article{Caillau2001,
abstract = {We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.},
author = {Caillau, Jean-Baptiste, Noailles, Joseph},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {celestial mechanics; minimum time problems; geometric control; parametric optimal control; minimum time transfer; controllability; convergence},
language = {eng},
pages = {239-258},
publisher = {EDP-Sciences},
title = {Coplanar control of a satellite around the earth},
url = {http://eudml.org/doc/90593},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Caillau, Jean-Baptiste
AU - Noailles, Joseph
TI - Coplanar control of a satellite around the earth
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 239
EP - 258
AB - We investigate the minimum time transfer of a satellite around the Earth. Using an optimal control model, we study the controllability of the system and propose a geometrical analysis of the optimal command structure. Furthermore, in order to solve the problem numerically, a new parametric technique is introduced for which convergence properties are established.
LA - eng
KW - celestial mechanics; minimum time problems; geometric control; parametric optimal control; minimum time transfer; controllability; convergence
UR - http://eudml.org/doc/90593
ER -

References

top
  1. [1] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors. SIAM J. Control Optim. 33 (1995) 1279–1311. Zbl0882.49024
  2. [2] B. Bonnard and G. Launay, Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407–467. Zbl0914.93043
  3. [3] J.B. Caillau, Contribution à l’étude du contrôle en temps minimal des transferts orbitaux. Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, France (2000). 
  4. [4] J.B. Caillau and J. Noailles, Continuous optimal control sensitivity analysis with AD, in Proc. of the 3rd International Conference on Automatic Differentiation. INRIA Nice, France (2000). Zbl0991.70019
  5. [5] J.B. Caillau and J. Noailles, Sensitivity analysis for time optimal orbit transfer. Optimization 49 (2001) 327–350. Zbl0991.70019
  6. [6] L. Cesari, Optimization Theory and Applications. Springer-Verlag (1983). Zbl0506.49001MR688142
  7. [7] C. Ferrier and R. Epenoy, Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica (to appear). 
  8. [8] M. Fliess, Variations sur la notion de contrôlabilité, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl0992.93002MR1799559
  9. [9] S. Geffroy, R. Epenoy and J. Noailles, Averaging techniques in optimal control for orbital low-thrust transfers and rendez-vous computation, in 11 t h International Astrodynamics Symposium. Gifu, Japan (1996) 166–171. 
  10. [10] M. Godbillon, Géométrie différentielle et mécanique analytique. Hermann, Paris (1985). Zbl0653.53001
  11. [11] V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). Zbl0940.93005MR1425878
  12. [12] K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205–227. Zbl0905.49012
  13. [13] K. Malanowski and H. Maurer, Sensitivity analysis for parametric optimal control problems with control-state constraints. Comp. Optim. Appl. 5 (1996) 253–283. Zbl0864.49020
  14. [14] J. Noailles and J. Gergaud, A new method for the time optimal control problem and its application to low thrust orbital transfer. Workshop on low thrust transfers, Toulouse, France, French Space Agency, CNES (2000). 
  15. [15] J. Noailles and T.C. Le, Contrôle en temps minimal et transfert orbital à faible poussée. Équations aux dérivées partielles et applications, articles in honour of J.L. Lions for his 70 th birthday. Gauthier-Villars (1998) 705–724. Zbl0919.49023
  16. [16] H.J. Sussmann, Geometry and Optimal Control, in Mathematical Control Theory, Dedicated to Roger W. Brockett on his 60 th birthday, edited by J. Baillieul and J.C. Willems. Springer-Verlag (1998). Zbl1067.49500MR1661472
  17. [17] H.J. Sussmann, Résultats récents sur les courbes optimales, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl1020.49020MR1799558
  18. [18] O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse, France (1987). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.