Coplanar control of a satellite around the earth
Jean-Baptiste Caillau; Joseph Noailles
ESAIM: Control, Optimisation and Calculus of Variations (2001)
- Volume: 6, page 239-258
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors. SIAM J. Control Optim. 33 (1995) 1279–1311. Zbl0882.49024
- [2] B. Bonnard and G. Launay, Time minimal control of batch reactors. ESAIM: COCV 3 (1998) 407–467. Zbl0914.93043
- [3] J.B. Caillau, Contribution à l’étude du contrôle en temps minimal des transferts orbitaux. Ph.D. Thesis, ENSEEIHT, Institut National Polytechnique de Toulouse, France (2000).
- [4] J.B. Caillau and J. Noailles, Continuous optimal control sensitivity analysis with AD, in Proc. of the 3rd International Conference on Automatic Differentiation. INRIA Nice, France (2000). Zbl0991.70019
- [5] J.B. Caillau and J. Noailles, Sensitivity analysis for time optimal orbit transfer. Optimization 49 (2001) 327–350. Zbl0991.70019
- [6] L. Cesari, Optimization Theory and Applications. Springer-Verlag (1983). Zbl0506.49001MR688142
- [7] C. Ferrier and R. Epenoy, Optimal control for engines with electro-ionic propulsion under constraint of eclipse. Acta Astronautica (to appear).
- [8] M. Fliess, Variations sur la notion de contrôlabilité, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl0992.93002MR1799559
- [9] S. Geffroy, R. Epenoy and J. Noailles, Averaging techniques in optimal control for orbital low-thrust transfers and rendez-vous computation, in 11 International Astrodynamics Symposium. Gifu, Japan (1996) 166–171.
- [10] M. Godbillon, Géométrie différentielle et mécanique analytique. Hermann, Paris (1985). Zbl0653.53001
- [11] V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). Zbl0940.93005MR1425878
- [12] K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205–227. Zbl0905.49012
- [13] K. Malanowski and H. Maurer, Sensitivity analysis for parametric optimal control problems with control-state constraints. Comp. Optim. Appl. 5 (1996) 253–283. Zbl0864.49020
- [14] J. Noailles and J. Gergaud, A new method for the time optimal control problem and its application to low thrust orbital transfer. Workshop on low thrust transfers, Toulouse, France, French Space Agency, CNES (2000).
- [15] J. Noailles and T.C. Le, Contrôle en temps minimal et transfert orbital à faible poussée. Équations aux dérivées partielles et applications, articles in honour of J.L. Lions for his 70 birthday. Gauthier-Villars (1998) 705–724. Zbl0919.49023
- [16] H.J. Sussmann, Geometry and Optimal Control, in Mathematical Control Theory, Dedicated to Roger W. Brockett on his 60 birthday, edited by J. Baillieul and J.C. Willems. Springer-Verlag (1998). Zbl1067.49500MR1661472
- [17] H.J. Sussmann, Résultats récents sur les courbes optimales, in Quelques aspects de la théorie du contrôle. Journée Annuelle de la Société Mathématique de France (2000). Zbl1020.49020MR1799558
- [18] O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse, France (1987).
Citations in EuDML Documents
top- Joseph Gergaud, Thomas Haberkorn, Homotopy method for minimum consumption orbit transfer problem
- Bernard Bonnard, Emmanuel Trélat, Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale
- Bernard Bonnard, Emmanuel Trélat, Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale