The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 22

Showing per page

Order by Relevance | Title | Year of publication

On a dynamical Brauer–Manin obstruction

Liang-Chung HsiaJoseph Silverman — 2009

Journal de Théorie des Nombres de Bordeaux

Let ϕ : X X be a morphism of a variety defined over a number field  K , let  V X be a K -subvariety, and let  𝒪 ϕ ( P ) = { ϕ n ( P ) : n 0 } be the orbit of a point  P X ( K ) . We describe a local-global principle for the intersection  V 𝒪 ϕ ( P ) . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of  V ( K ) are Brauer–Manin unobstructed for power maps on  2 in two cases: (1)  V is a translate of a torus. (2)  V is a line and  P has a preperiodic coordinate. A key tool in the proofs is the classical...

Lehmer’s conjecture for polynomials satisfying a congruence divisibility condition and an analogue for elliptic curves

Joseph H. Silverman — 2012

Journal de Théorie des Nombres de Bordeaux

A number of authors have proven explicit versions of Lehmer’s conjecture for polynomials whose coefficients are all congruent to  1 modulo  m . We prove a similar result for polynomials  f ( X ) that are divisible in  ( / m ) [ X ] by a polynomial of the form 1 + X + + X n for some n ϵ deg ( f ) . We also formulate and prove an analogous statement for elliptic curves.

Page 1 Next

Download Results (CSV)