Canonical heights on varieties with morphisms
Gregory S. Call; Joseph H. Silverman
Compositio Mathematica (1993)
- Volume: 89, Issue: 2, page 163-205
- ISSN: 0010-437X
Access Full Article
topHow to cite
topCall, Gregory S., and Silverman, Joseph H.. "Canonical heights on varieties with morphisms." Compositio Mathematica 89.2 (1993): 163-205. <http://eudml.org/doc/90256>.
@article{Call1993,
author = {Call, Gregory S., Silverman, Joseph H.},
journal = {Compositio Mathematica},
keywords = {height function; non-archimedean local height pairings; intersection theory},
language = {eng},
number = {2},
pages = {163-205},
publisher = {Kluwer Academic Publishers},
title = {Canonical heights on varieties with morphisms},
url = {http://eudml.org/doc/90256},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Call, Gregory S.
AU - Silverman, Joseph H.
TI - Canonical heights on varieties with morphisms
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 89
IS - 2
SP - 163
EP - 205
LA - eng
KW - height function; non-archimedean local height pairings; intersection theory
UR - http://eudml.org/doc/90256
ER -
References
top- 1. Bosch, S., Lütkebohmert, W., and Raynaud, M.: Néron Models. Springer-Verlag, Berlin, (1990). Zbl0705.14001MR1045822
- 2. Call, G.: Variation of local heights on an algebraic family of abelian varieties. Théorie des Nombres, Berlin, (1989). Zbl0701.14022MR1024553
- 3. Call, G. and Silverman, J.: Computing canonical heights on K3 surfaces, in preparation. Zbl0865.14020
- 4. Dem'janenko, V.A.: An estimate of the remainder term in Tate's formula (Russian), Mat. Zametki3 (1968) 271-278. Zbl0161.40601MR227166
- 5. Dem'janenko, V.A.: Rational points of a class of algebraic curves, AMS Translations (2) 66 (1968) 246-272. Zbl0181.24001
- 6. Green, W.: Heights in families of abelian varieties, Duke Math. J.58 (1989) 617-632. Zbl0698.14043MR1016438
- 7. Hartshorne, R.: Algebraic Geometry, Springer-Verlag, New York, (1977). Zbl0367.14001MR463157
- 8. Lang, S.: Fundamentals of Diophantine Geometry, New York, (1983). Zbl0528.14013MR715605
- 9. Lang, S.: Number Theory III: Diophantine Geometry. Encycl. Math. Sci. v. 60, Springer-Verlag, Berlin, (1991). Zbl0744.14012MR1112552
- 10. Lewis, D.J.: Invariant sets of morphisms on projective and affine number spaces, J. Algebra20 (1972) 419-434. Zbl0245.12003MR302602
- 11. Manin, Ju.: The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk. SSSR33 (1969) 433-438. Zbl0205.25002MR272786
- 12. Manin, Ju. and Zarhin, Ju.: Height on families of abelian varieties, Math. USSR Sbor.18 (1972) 169-179. Zbl0263.14011
- 13. Narkiewicz, W.: On polynomial transformations in several variables, Acta Arith.11 (1965) 163-168. Zbl0148.41801MR186625
- 14. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math.82 (1965) 249-331. Zbl0163.15205MR179173
- 15. Silverman, J.H.: Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math.342 (1983) 197-211. Zbl0505.14035MR703488
- 16. Silverman, J.H.: The Arithmetic of Elliptic Curves, Springer, New York, (1986). Zbl0585.14026MR817210
- 17. Silverman, J.H.: Arithmetic distance functions and height functions in Diophantine geometry, Math. Ann.279 (1987) 193-216. Zbl0607.14013MR919501
- 18. Silverman, J.H.: Computing heights on elliptic curves, Math. Comp.51 (1988) 339-358. Zbl0656.14016MR942161
- 19. Silverman, J.H.: Rational points on K3 surfaces: A new canonical height, Invent. Math.105 (1991) 347-373. Zbl0754.14023MR1115546
- 20. Silverman, J.H.: Variation of the canonical height on elliptic surfaces I: Three examples, J. Reine Angew. Math.426 (1992) 151-178. Zbl0739.14023MR1155751
- 21. Tate, J.: Letter to J.-P. Serre, Oct. 1, (1979).
- 22. Tate, J.: Variation of the canonical height of a point depending on a parameter, Amer. J. Math.105 (1983) 287-294. Zbl0618.14019MR692114
- 23. Wehler, J.: K3-surfaces with Picard number 2, Arch. Math.50 (1988) 73-82. Zbl0602.14038MR925498
- 24. Wehler, J.: Hypersurfaces of the Flag Variety, Math. Zeit.198 (1988) 21-38. Zbl0662.14029MR938026
- 25. Zimmer, H.: On the difference of the Weil height and the Néron-Tate height, Math. Z.174 (1976) 35-51. Zbl0303.14003MR419455
Citations in EuDML Documents
top- Xander Faber, Adam Towsley, Newton’s method over global height fields
- Atsushi Sato, On the distribution of rational points on certain Kummer surfaces
- Matthew H. Baker, Robert Rumely, Equidistribution of Small Points, Rational Dynamics, and Potential Theory
- Joseph H. Silverman, The field of definition for dynamical systems on
- Liang-Chung Hsia, A weak Néron model with applications to -adic dynamical systems
- Laurent Denis, Problème de Lehmer en caractéristique finie
- Pascal Autissier, Équidistribution des sous-variétés de petite hauteur
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.