The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Consider the linear congruence equation for , . Let denote the generalized gcd of and which is the largest with dividing and simultaneously. Let be all positive divisors of . For each , define . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on . We generalize their result with generalized gcd restrictions on and prove that for the above linear congruence, the number of solutions...
Menon’s identity is a classical identity involving gcd sums and the Euler totient function . A natural generalization of is the Klee’s function . We derive a Menon-type identity using Klee’s function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
Download Results (CSV)