A formula for the number of solutions of a restricted linear congruence
Mathematica Bohemica (2021)
- Issue: 1, page 47-54
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNamboothiri, K. Vishnu. "A formula for the number of solutions of a restricted linear congruence." Mathematica Bohemica (2021): 47-54. <http://eudml.org/doc/297195>.
@article{Namboothiri2021,
abstract = {Consider the linear congruence equation $x_1+\ldots +x_k \equiv b\hspace\{4.44443pt\}(\@mod \; n^s)$ for $b\in \mathbb \{Z\}$, $n,s\in \mathbb \{N\}$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in \mathbb \{N\}$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots , d_\{\tau (n)\}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal \{C\}_\{j,s\}(n) = \lbrace 1\le x\le n^s\colon (x,n^s)_s = d^s_j\rbrace $. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is \[ \frac\{1\}\{n^s\}\sum \limits \_\{d\mid n\}c\_\{d,s\}(b)\prod \limits \_\{j=1\}^\{\tau (n)\}\Bigl (c\_\{\{n\}/\{d\_j\},s\}\Bigl (\frac\{n^s\}\{d^s\}\Big )\Big )^\{g\_j\} \]
where $g_j = |\lbrace x_1,\ldots , x_k\rbrace \cap \mathcal \{C\}_\{j,s\}(n)|$ for $j=1,\ldots , \tau (n)$ and $c_\{d,s\}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955).},
author = {Namboothiri, K. Vishnu},
journal = {Mathematica Bohemica},
keywords = {restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform},
language = {eng},
number = {1},
pages = {47-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A formula for the number of solutions of a restricted linear congruence},
url = {http://eudml.org/doc/297195},
year = {2021},
}
TY - JOUR
AU - Namboothiri, K. Vishnu
TI - A formula for the number of solutions of a restricted linear congruence
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 47
EP - 54
AB - Consider the linear congruence equation $x_1+\ldots +x_k \equiv b\hspace{4.44443pt}(\@mod \; n^s)$ for $b\in \mathbb {Z}$, $n,s\in \mathbb {N}$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in \mathbb {N}$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots , d_{\tau (n)}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal {C}_{j,s}(n) = \lbrace 1\le x\le n^s\colon (x,n^s)_s = d^s_j\rbrace $. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is \[ \frac{1}{n^s}\sum \limits _{d\mid n}c_{d,s}(b)\prod \limits _{j=1}^{\tau (n)}\Bigl (c_{{n}/{d_j},s}\Bigl (\frac{n^s}{d^s}\Big )\Big )^{g_j} \]
where $g_j = |\lbrace x_1,\ldots , x_k\rbrace \cap \mathcal {C}_{j,s}(n)|$ for $j=1,\ldots , \tau (n)$ and $c_{d,s}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955).
LA - eng
KW - restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform
UR - http://eudml.org/doc/297195
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Bibak, K., Kapron, B. M., Srinivasan, V., 10.1142/S179304211650130X, Int. J. Number Theory 12 (2016), 2167-2171. (2016) Zbl1353.11066MR3562020DOI10.1142/S179304211650130X
- Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L., 10.1016/j.jnt.2016.07.018, J. Number Theory 171 (2017), 128-144. (2017) Zbl1353.11067MR3556678DOI10.1016/j.jnt.2016.07.018
- Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L., 10.1142/S0129054118500089, Int. J. Found. Comput. Sci. (2018), 357-375. (2018) Zbl1391.94730MR3799234DOI10.1142/S0129054118500089
- Cohen, E., 10.1215/S0012-7094-49-01607-5, Duke Math. J. 16 (1949), 85-90. (1949) Zbl0034.02104MR0027781DOI10.1215/S0012-7094-49-01607-5
- Cohen, E., 10.1215/S0012-7094-55-02260-2, Duke Math. J. 22 (1955), 543-550. (1955) Zbl0067.02205MR0072163DOI10.1215/S0012-7094-55-02260-2
- Cohen, E., 10.1073/pnas.41.11.939, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. (1955) Zbl0066.29203MR0075230DOI10.1073/pnas.41.11.939
- Dixon, J. D., 10.4153/CMB-1960-013-5, Can. Math. Bull. 3 (1960), 121-126. (1960) Zbl0093.25902MR0123519DOI10.4153/CMB-1960-013-5
- Lehmer, D. N., 10.2307/2972413, Am. Math. Monthly 20 (1913), 151-157 9999JFM99999 44.0248.09. (1913) MR1517830DOI10.2307/2972413
- Liskovets, V. A., 10.1515/INTEG.2010.012, Integers 10 (2010), 155-177. (2010) Zbl1230.11007MR2601316DOI10.1515/INTEG.2010.012
- McCarthy, P. J., 10.1515/crll.1960.203.55, J. Reine Angew. Math. 203 (1960), 55-63. (1960) Zbl0101.28002MR0111712DOI10.1515/crll.1960.203.55
- Montgomery, H. L., Vaughan, R. C., 10.1017/cbo9780511618314, Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). (2007) Zbl1142.11001MR2378655DOI10.1017/cbo9780511618314
- Namboothiri, K. V., 10.1016/j.jnt.2018.01.013, J. Number Theory 188 (2018), 324-334. (2018) Zbl06855850MR3778637DOI10.1016/j.jnt.2018.01.013
- Nicol, C. A., Vandiver, H. S., 10.1073/pnas.40.9.825, Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. (1954) Zbl0056.04001MR0063399DOI10.1073/pnas.40.9.825
- Rademacher, H., Aufgabe 30, Jahresber. Dtsch. Math.-Ver. 34 (1925), page 158 German. (1925)
- Rademacher, H., Aufgabe 30. Lösung von A. Brauer, Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German 9999JFM99999 52.0139.03. (1926)
- Sander, J. W., Sander, T., 10.1016/j.jnt.2012.08.021, J. Number Theory 133 (2013), 705-718. (2013) Zbl1353.11018MR2994382DOI10.1016/j.jnt.2012.08.021
- Tóth, L., Counting solutions of quadratic congruences in several variables revisited, J. Integer Seq. 17 (2014), Article 14.11.6, 23 pages. (2014) Zbl1321.11041MR3291084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.