The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Handle attaching in symplectic homology and the Chord Conjecture

Kai Cieliebak — 2002

Journal of the European Mathematical Society

Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a haracteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant 1 . More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies...

First steps in stable Hamiltonian topology

Kai CieliebakEvgeny Volkov — 2015

Journal of the European Mathematical Society

In this paper we study topological properties of stable Hamiltonian structures. In particular, we prove the following results in dimension three: The space of stable Hamiltonian structures modulo homotopy is discrete; stable Hamiltonian structures are generically Morse-Bott (i.e. all closed orbits are Bott nondegenerate) but not Morse; the standard contact structure on S 3 is homotopic to a stable Hamiltonian structure which cannot be embedded in 4 . Moreover, we derive a structure theorem for stable...

Rabinowitz Floer homology and symplectic homology

Kai CieliebakUrs FrauenfelderAlexandru Oancea — 2010

Annales scientifiques de l'École Normale Supérieure

The first two authors have recently defined Rabinowitz Floer homology groups R F H * ( M , W ) associated to a separating exact embedding of a contact manifold ( M , ξ ) into a symplectic manifold ( W , ω ) . These depend only on the bounded component V of W M . We construct a long exact sequence in which symplectic cohomology of V maps to symplectic homology of V , which in turn maps to Rabinowitz Floer homology R F H * ( M , W ) , which then maps to symplectic cohomology of V . We compute R F H * ( S T * L , T * L ) , where S T * L is the unit cosphere bundle of a closed manifold...

Page 1

Download Results (CSV)