The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We examine an arithmetical function defined by recursion relations on the sequence and obtain sufficient condition(s) for the sequence to change sign infinitely often. As an application we give criteria for infinitely many sign changes of Chebyshev polynomials and that of sequence formed by the Fourier coefficients of a cusp form.
Let be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form whose ideal class group has an element of order . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
Let be a family of elliptic curves over , where is a positive integer and , are distinct odd primes. We study the torsion part and the rank of . More specifically, we prove that the torsion subgroup of is trivial and the -rank of this family is at least 2, whenever , and with neither nor dividing .
Download Results (CSV)