Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Positive operator bimeasures and a noncommutative generalization

Kari Ylinen — 1996

Studia Mathematica

For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of...

Representations of bimeasures

Kari Ylinen — 1993

Studia Mathematica

Separately σ-additive and separately finitely additive complex functions on the Cartesian product of two algebras of sets are represented in terms of spectral measures and their finitely additive counterparts. Applications of the techniques include a bounded joint convergence theorem for bimeasure integration, characterizations of positive-definite bimeasures, and a theorem on decomposing a bimeasure into a linear combination of positive-definite ones.

Page 1

Download Results (CSV)