The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Monotone substochastic operators and a new Calderón couple

Karol Leśnik — 2015

Studia Mathematica

An important result on submajorization, which goes back to Hardy, Littlewood and Pólya, states that b ⪯ a if and only if there is a doubly stochastic matrix A such that b = Aa. We prove that under monotonicity assumptions on the vectors a and b the matrix A may be chosen monotone. This result is then applied to show that ( L p ˜ , L ) is a Calderón couple for 1 ≤ p < ∞, where L p ˜ is the Köthe dual of the Cesàro space C e s p ' (or equivalently the down space L p ' ). In particular, ( L ¹ ˜ , L ) is a Calderón couple, which gives a...

Dual spaces to Orlicz-Lorentz spaces

Anna KamińskaKarol LeśnikYves Raynaud — 2014

Studia Mathematica

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λ φ , w or the sequence space λ φ , w , equipped with either the Luxemburg or Amemiya norms. The first description is via the modular i n f φ ( f * / | g | ) | g | : g w , where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular I φ ( ( f * ) / w ) w ,where (f*)⁰ is Halperin’s level function...

Some remarks on level functions and their applications

Paweł ForalewskiKarol LeśnikLech Maligranda — 2016

Commentationes Mathematicae

A comparison of the level functions considered by Halperin and Sinnamon is discussed. Moreover, connections between Lorentz-type spaces, down spaces, Cesàro spaces, and Sawyer's duality formula are explained. Applying Sinnamon's ideas, we prove the duality theorem for Orlicz−Lorentz spaces which generalizes a recent result by Kamińska, Leśnik, and Raynaud (and Nakamura). Finally, some applications of the level functions to the geometry of Orlicz−Lorentz spaces are presented.

Page 1

Download Results (CSV)