A note on integral inequalities and embeddings of Besov spaces.
Given a family of Lévy measures ={(, ⋅)}, the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family . Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.
We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.
Page 1