We introduce the generalized fractional integrals and prove the strong and weak boundedness of on the central Morrey spaces . In order to show the boundedness, the generalized λ-central mean oscillation spaces and the generalized weak λ-central mean oscillation spaces play an important role.
We define Beurling-Orlicz spaces, weak Beurling-Orlicz spaces, Herz-Orlicz spaces, weak Herz-Orlicz spaces, central Morrey-Orlicz spaces and weak central Morrey-Orlicz spaces. Moreover, the strong-type and weak-type estimates of the Hardy-Littlewood maximal function on these spaces are investigated.
We introduce function spaces with Morrey-Campanato norms, which unify , and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator on these spaces.
Download Results (CSV)