Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk D, if F(D) is a convex domain, then the inequality |G(z2)− G(z1)| < |H(z2) − H(z1)| holds for all distinct points z1, z2∈ D. Here H and G are holomorphic mappings in D determined by F = H + Ḡ, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F...
Quasihomography is a useful notion to represent a sense-preserving automorphism of the unit circle T which admits a quasiconformal extension to the unit disc. For K ≥ 1 let denote the family of all K-quasihomographies of T. With any we associate the Douady-Earle extension and give an explicit and asymptotically sharp estimate of the norm of the complex dilatation of .
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping in the unit disk , if is a convex domain, then the inequality holds for all distinct points . Here and are holomorphic mappings in determined by , up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain in and improve it provided is additionally a quasiconformal mapping in .
Download Results (CSV)