The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be an algebraic number field and the ring of integers of . In this paper, we prove an analogue of Voronoï’s theorem for -lattices and the finiteness of the number of similar isometry classes of perfect -lattices.
We generalize Poor and Yuen’s inequality to the Hermite–Rankin constant and the Bergé–Martinet constant . Moreover, we determine explicit values of some low- dimensional Hermite–Rankin and Bergé–Martinet constants by applying Rankin’s inequality and some inequalities proven by Bergé and Martinet to explicit values of , and ().
Download Results (CSV)