The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Modularity of p -adic Galois representations via p -adic approximations

Chandrashekhar Khare — 2004

Journal de Théorie des Nombres de Bordeaux

In this short note we give a new approach to proving modularity of p -adic Galois representations using a method of p -adic approximations. This recovers some of the well-known results of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with the p -adic Galois representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ramakrishna, a level raising result due to Ribet, Diamond, Taylor,...

Functoriality and the Inverse Galois problem II: groups of type B n and G 2

Chandrashekhar KhareMichael LarsenGordan Savin — 2010

Annales de la faculté des sciences de Toulouse Mathématiques

This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and t a positive integer. We show that that the finite simple groups of Lie type B n ( k ) = 3 D S O 2 n + 1 ( 𝔽 k ) d e r if 3 , 5 ( mod 8 ) and G 2 ( k ) appear as Galois groups over , for some k divisible by t . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control...

Page 1

Download Results (CSV)