Functoriality and the Inverse Galois problem II: groups of type B n and G 2

Chandrashekhar Khare[1]; Michael Larsen[2]; Gordan Savin[3]

  • [1] Department of Mathematics, UCLA, Los Angeles CA 90095-1555, U.S.A.
  • [2] Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.
  • [3] Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, U.S.A

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 1, page 37-70
  • ISSN: 0240-2963

Abstract

top
This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and t a positive integer. We show that that the finite simple groups of Lie type B n ( k ) = 3 D S O 2 n + 1 ( 𝔽 k ) d e r if 3 , 5 ( mod 8 ) and G 2 ( k ) appear as Galois groups over , for some k divisible by t . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control of k .

How to cite

top

Khare, Chandrashekhar, Larsen, Michael, and Savin, Gordan. "Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 37-70. <http://eudml.org/doc/115867>.

@article{Khare2010,
abstract = {This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over $\mathbb\{Q\}$? Let $\ell $ be a prime and $t$ a positive integer. We show that that the finite simple groups of Lie type $B_\{n\}(\ell ^\{k\})=3DSO_\{2n+1\}(\{\mathbb\{F\}\}_\{\ell ^\{k\}\})^\{der\}$ if $\ell \equiv 3,5\hspace\{4.44443pt\}(\@mod \; 8)$ and $G_\{2\}(\ell ^\{k\})$ appear as Galois groups over $\mathbb\{Q\}$, for some $k$ divisible by $t$. In particular, for each of the two Lie types and fixed $\ell $ we construct infinitely many Galois groups but we do not have a precise control of $k$.},
affiliation = {Department of Mathematics, UCLA, Los Angeles CA 90095-1555, U.S.A.; Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.; Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, U.S.A},
author = {Khare, Chandrashekhar, Larsen, Michael, Savin, Gordan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {inverse Galois problem; Langlands functoriality},
language = {eng},
month = {1},
number = {1},
pages = {37-70},
publisher = {Université Paul Sabatier, Toulouse},
title = {Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$},
url = {http://eudml.org/doc/115867},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Khare, Chandrashekhar
AU - Larsen, Michael
AU - Savin, Gordan
TI - Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 37
EP - 70
AB - This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over $\mathbb{Q}$? Let $\ell $ be a prime and $t$ a positive integer. We show that that the finite simple groups of Lie type $B_{n}(\ell ^{k})=3DSO_{2n+1}({\mathbb{F}}_{\ell ^{k}})^{der}$ if $\ell \equiv 3,5\hspace{4.44443pt}(\@mod \; 8)$ and $G_{2}(\ell ^{k})$ appear as Galois groups over $\mathbb{Q}$, for some $k$ divisible by $t$. In particular, for each of the two Lie types and fixed $\ell $ we construct infinitely many Galois groups but we do not have a precise control of $k$.
LA - eng
KW - inverse Galois problem; Langlands functoriality
UR - http://eudml.org/doc/115867
ER -

References

top
  1. Carter (R.).— Finite Groups of Lie Type, Wiley Classics Library, New York, 1993. Zbl0567.20023MR1266626
  2. Clozel (L.).— Représentations galoisiennes associées aux représentations automorphes autoduales de GL ( n ) . Inst. Hautes Études Sci. Publ. Math. No. 73, p. 97-145 (1991). Zbl0739.11020MR1114211
  3. Cogdell (J.), Kim (H.), Piatetski-Shapiro (I.) and Shahidi (F.).— Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99, p. 163-233 (2004). Zbl1090.22010MR2075885
  4. DeBacker (S.) and Reeder (M.).— Depth zero supercuspidal L -packets and their stability. Annals of Math. 169, No. 3, p. 795-901 (2009). Zbl1193.11111MR2480618
  5. Gan (W. T.).— Exceptional Howe correspondences over finite fields. Compositio Math. 118, p. 323-344 (1999). Zbl0939.20010MR1711303
  6. Gan (W. T.) and Savin (G.).— Real and global lifts from PGL 3 to G 2 . Inter. Math. Res. Not. 50, p. 2699-2724 (2003). Zbl1037.22033MR2017248
  7. Gan (W. T.) and Savin (G.).— Endoscopic lifts from PGL 3 to G 2 . Compositio Math. 140, p. 793-808 (2004). Zbl1071.22007MR2041781
  8. Ginzburg (D.), Rallis (S.) and Soudry (D.).— A tower of theta correspondences for G 2 . Duke Math. J. 88, p. 537-624 (1997). Zbl0881.11051MR1455531
  9. Gross (B. H.) and Reeder (M.).— Arithmetic invariants of discrete Langlands parameters. In preparation. Zbl1207.11111
  10. Gross (B. H.) and Savin (G.).— Motives with Galois group of type G 2 : an exceptional theta correspondence. Compositio Math. 114, p. 153-217 (1998). Zbl0931.11015MR1661756
  11. Harris (M.), Taylor (R.).— The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, 151. Princeton University Press, Princeton, NJ, 2001. viii+276 pp. Zbl1036.11027MR1876802
  12. Harris (M.).— Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications. to appear in Algebra, Arithmetic, and Geometry: Manin Festschrift (Birkhuser, in press). Zbl1234.11068
  13. Huang (J. S.), Pandžić (P.) and Savin (G.).— New dual pair correspondences. Duke Math. J. 82, p. 447-471 (1996). Zbl0865.22009MR1387237
  14. Humphreys (J. E.).— Linear Algebraic Groups. Graduate Texts in Mathematics, 21. Springer-Verlag, New York, 1975. Zbl0325.20039MR396773
  15. Humphreys (J. E.).— Conjugacy classes in semi-simple algebraic groups. Mathematical Surveys and Monographs, 43. American Mathematical Society, Providence, RI, 1995. Zbl0834.20048MR1343976
  16. Jiang (D.), Soudry (D.).— The local converse theorem for SO ( 2 n + 1 ) and applications. Ann. of Math. (2) 157 (2003), no. 3, 743-806. Zbl1049.11055MR1983781
  17. Jiang (D.), Soudry (D.).— Lecture at the workshop on Automorphic Forms, Geometry and Arithmetic. Oberwolfach, February 2008. Announcement available at http://www.mfo.de/ 
  18. Khare (C.), Larsen (M.) and Savin (G.).— Functoriality and the inverse Galois problem. Compositio Math. 144 (2008), 541–564. Zbl1194.11062MR2422339
  19. Kostrikin (A. I.) and Tiep (P. H.).— Orthogonal Decompositions and Integral Lattices, De Gruyter Expositions in Mathematics 15, Walter de Gruyter, Berlin - New York, 1994. Zbl0855.11033MR1308713
  20. Khare (C.) and Wintenberger (J-P.).— Serre’s modularity conjecture (I), Invent Math. 178, p. 485-504 (2009). Zbl1304.11041MR2551763
  21. Larsen (M.).— Maximality of Galois actions for compatible systems. Duke Math. J. 80, no. 3, p. 601-630 (1995). Zbl0912.11026MR1370110
  22. Larsen (M.) and Pink (R.).— Finite subgroups of algebraic groups. preprint available at http://www.math.ethz.ch/~pink/publications.html 
  23. Magaard (K.) and Savin (G.).— Exceptional theta correspondences. Compositio Math. 107, p. 89-123 (1997). Zbl0878.22011MR1457344
  24. Moy (A.).— The irreducible orthogonal and symplectic Galois representations of a p -adic field (the tame case). Journal of Number Theory 10, p. 341-344 (1984). Zbl0546.12009MR769787
  25. Muić (G.).— The unitary dual of p -adic G 2 . Duke Math. J. 90, p. 465-493 (1997). Zbl0896.22006MR1480543
  26. Savin (G.).— K -types of minimal representations ( p -adic case). Glasnik Mat. Vol. 31(51), p. 93-99. Zbl0856.22020MR1400528
  27. Savin (G.).— Lifting of generic depth zero representations of classical groups. J. of Algebra 319, p. 3244-3258 (2008). Zbl1147.22008MR2408316
  28. Sug Woo Shin.— Galois representations arising from some compact Shimura varieties. Preprint, IAS, (2008). Zbl1269.11053
  29. Tadić (M.).— Representations of p -adic symplectic groups. Compositio Math. 90, p. 123-181 (1994). Zbl0797.22008MR1266251
  30. Taylor (R.).— Galois representations. Ann. Fac. Sci. Toulouse Math. 13, p. 73-119 (2004). Zbl1074.11030MR2060030
  31. Wiese (G.).— On projective linear groups over finite fields as Galois groups over the rational numbers. Modular Forms on Schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer and Ben Moonen. Cambridge University Press, p. 343-350 (2008). Zbl1217.12004MR2530980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.