Functoriality and the Inverse Galois problem II: groups of type and
Chandrashekhar Khare[1]; Michael Larsen[2]; Gordan Savin[3]
- [1] Department of Mathematics, UCLA, Los Angeles CA 90095-1555, U.S.A.
- [2] Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.
- [3] Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, U.S.A
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 1, page 37-70
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKhare, Chandrashekhar, Larsen, Michael, and Savin, Gordan. "Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 37-70. <http://eudml.org/doc/115867>.
@article{Khare2010,
abstract = {This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over $\mathbb\{Q\}$? Let $\ell $ be a prime and $t$ a positive integer. We show that that the finite simple groups of Lie type $B_\{n\}(\ell ^\{k\})=3DSO_\{2n+1\}(\{\mathbb\{F\}\}_\{\ell ^\{k\}\})^\{der\}$ if $\ell \equiv 3,5\hspace\{4.44443pt\}(\@mod \; 8)$ and $G_\{2\}(\ell ^\{k\})$ appear as Galois groups over $\mathbb\{Q\}$, for some $k$ divisible by $t$. In particular, for each of the two Lie types and fixed $\ell $ we construct infinitely many Galois groups but we do not have a precise control of $k$.},
affiliation = {Department of Mathematics, UCLA, Los Angeles CA 90095-1555, U.S.A.; Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A.; Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, U.S.A},
author = {Khare, Chandrashekhar, Larsen, Michael, Savin, Gordan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {inverse Galois problem; Langlands functoriality},
language = {eng},
month = {1},
number = {1},
pages = {37-70},
publisher = {Université Paul Sabatier, Toulouse},
title = {Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$},
url = {http://eudml.org/doc/115867},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Khare, Chandrashekhar
AU - Larsen, Michael
AU - Savin, Gordan
TI - Functoriality and the Inverse Galois problem II: groups of type $B_n$ and $G_2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 37
EP - 70
AB - This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over $\mathbb{Q}$? Let $\ell $ be a prime and $t$ a positive integer. We show that that the finite simple groups of Lie type $B_{n}(\ell ^{k})=3DSO_{2n+1}({\mathbb{F}}_{\ell ^{k}})^{der}$ if $\ell \equiv 3,5\hspace{4.44443pt}(\@mod \; 8)$ and $G_{2}(\ell ^{k})$ appear as Galois groups over $\mathbb{Q}$, for some $k$ divisible by $t$. In particular, for each of the two Lie types and fixed $\ell $ we construct infinitely many Galois groups but we do not have a precise control of $k$.
LA - eng
KW - inverse Galois problem; Langlands functoriality
UR - http://eudml.org/doc/115867
ER -
References
top- Carter (R.).— Finite Groups of Lie Type, Wiley Classics Library, New York, 1993. Zbl0567.20023MR1266626
- Clozel (L.).— Représentations galoisiennes associées aux représentations automorphes autoduales de . Inst. Hautes Études Sci. Publ. Math. No. 73, p. 97-145 (1991). Zbl0739.11020MR1114211
- Cogdell (J.), Kim (H.), Piatetski-Shapiro (I.) and Shahidi (F.).— Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99, p. 163-233 (2004). Zbl1090.22010MR2075885
- DeBacker (S.) and Reeder (M.).— Depth zero supercuspidal -packets and their stability. Annals of Math. 169, No. 3, p. 795-901 (2009). Zbl1193.11111MR2480618
- Gan (W. T.).— Exceptional Howe correspondences over finite fields. Compositio Math. 118, p. 323-344 (1999). Zbl0939.20010MR1711303
- Gan (W. T.) and Savin (G.).— Real and global lifts from to . Inter. Math. Res. Not. 50, p. 2699-2724 (2003). Zbl1037.22033MR2017248
- Gan (W. T.) and Savin (G.).— Endoscopic lifts from to . Compositio Math. 140, p. 793-808 (2004). Zbl1071.22007MR2041781
- Ginzburg (D.), Rallis (S.) and Soudry (D.).— A tower of theta correspondences for . Duke Math. J. 88, p. 537-624 (1997). Zbl0881.11051MR1455531
- Gross (B. H.) and Reeder (M.).— Arithmetic invariants of discrete Langlands parameters. In preparation. Zbl1207.11111
- Gross (B. H.) and Savin (G.).— Motives with Galois group of type : an exceptional theta correspondence. Compositio Math. 114, p. 153-217 (1998). Zbl0931.11015MR1661756
- Harris (M.), Taylor (R.).— The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, 151. Princeton University Press, Princeton, NJ, 2001. viii+276 pp. Zbl1036.11027MR1876802
- Harris (M.).— Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications. to appear in Algebra, Arithmetic, and Geometry: Manin Festschrift (Birkhuser, in press). Zbl1234.11068
- Huang (J. S.), Pandžić (P.) and Savin (G.).— New dual pair correspondences. Duke Math. J. 82, p. 447-471 (1996). Zbl0865.22009MR1387237
- Humphreys (J. E.).— Linear Algebraic Groups. Graduate Texts in Mathematics, 21. Springer-Verlag, New York, 1975. Zbl0325.20039MR396773
- Humphreys (J. E.).— Conjugacy classes in semi-simple algebraic groups. Mathematical Surveys and Monographs, 43. American Mathematical Society, Providence, RI, 1995. Zbl0834.20048MR1343976
- Jiang (D.), Soudry (D.).— The local converse theorem for and applications. Ann. of Math. (2) 157 (2003), no. 3, 743-806. Zbl1049.11055MR1983781
- Jiang (D.), Soudry (D.).— Lecture at the workshop on Automorphic Forms, Geometry and Arithmetic. Oberwolfach, February 2008. Announcement available at http://www.mfo.de/
- Khare (C.), Larsen (M.) and Savin (G.).— Functoriality and the inverse Galois problem. Compositio Math. 144 (2008), 541–564. Zbl1194.11062MR2422339
- Kostrikin (A. I.) and Tiep (P. H.).— Orthogonal Decompositions and Integral Lattices, De Gruyter Expositions in Mathematics 15, Walter de Gruyter, Berlin - New York, 1994. Zbl0855.11033MR1308713
- Khare (C.) and Wintenberger (J-P.).— Serre’s modularity conjecture (I), Invent Math. 178, p. 485-504 (2009). Zbl1304.11041MR2551763
- Larsen (M.).— Maximality of Galois actions for compatible systems. Duke Math. J. 80, no. 3, p. 601-630 (1995). Zbl0912.11026MR1370110
- Larsen (M.) and Pink (R.).— Finite subgroups of algebraic groups. preprint available at http://www.math.ethz.ch/~pink/publications.html
- Magaard (K.) and Savin (G.).— Exceptional theta correspondences. Compositio Math. 107, p. 89-123 (1997). Zbl0878.22011MR1457344
- Moy (A.).— The irreducible orthogonal and symplectic Galois representations of a -adic field (the tame case). Journal of Number Theory 10, p. 341-344 (1984). Zbl0546.12009MR769787
- Muić (G.).— The unitary dual of -adic . Duke Math. J. 90, p. 465-493 (1997). Zbl0896.22006MR1480543
- Savin (G.).— -types of minimal representations (-adic case). Glasnik Mat. Vol. 31(51), p. 93-99. Zbl0856.22020MR1400528
- Savin (G.).— Lifting of generic depth zero representations of classical groups. J. of Algebra 319, p. 3244-3258 (2008). Zbl1147.22008MR2408316
- Sug Woo Shin.— Galois representations arising from some compact Shimura varieties. Preprint, IAS, (2008). Zbl1269.11053
- Tadić (M.).— Representations of -adic symplectic groups. Compositio Math. 90, p. 123-181 (1994). Zbl0797.22008MR1266251
- Taylor (R.).— Galois representations. Ann. Fac. Sci. Toulouse Math. 13, p. 73-119 (2004). Zbl1074.11030MR2060030
- Wiese (G.).— On projective linear groups over finite fields as Galois groups over the rational numbers. Modular Forms on Schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer and Ben Moonen. Cambridge University Press, p. 343-350 (2008). Zbl1217.12004MR2530980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.