Contrôle et stabilisation d'ondes électromagnétiques
Nous quantifions la propriété de continuation unique pour le laplacien dans un domaine borné quand la condition aux bords est a priori inconnue. Nous établissons une estimation de dépen-dance de type logarithmique suivant la terminologie de John [5]. Les outils utilisés reposent sur les inégalités de Carleman et les techniques des travaux de Robbiano [8, 11]. Aussi, nous déterminons en application de l’inégalité d’observabilité obtenue un coût du contrôle approché pour un problème elliptique modèle....
We consider the exact controllability and stabilization of Maxwell equation by using results on the propagation of singularities of the electromagnetic field. We will assume geometrical control condition and use techniques of the work of Bardos on the wave equation. The problem of internal stabilization will be treated with more attention because the condition div is not preserved by the system of Maxwell with Ohm's law.
We consider the Laplace equation in a smooth bounded domain. We prove logarithmic estimates, in the sense of John [5] of solutions on a part of the boundary or of the domain without known boundary conditions. These results are established by employing Carleman estimates and techniques that we borrow from the works of Robbiano [8,11]. Also, we establish an estimate on the cost of an approximate control for an elliptic model equation.
This paper presents a new observability estimate for parabolic equations in , where is a convex domain. The observation region is restricted over a product set of an open nonempty subset of and a subset of positive measure in . This estimate is derived with the aid of a quantitative unique continuation at one point in time. Applications to the bang-bang property for norm and time optimal control problems are provided.
Page 1