Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Dispersing cocycles and mixing flows under functions

Klaus Schmidt — 2002

Fundamenta Mathematicae

Let T be a measure-preserving and mixing action of a countable abelian group G on a probability space (X,,μ) and A a locally compact second countable abelian group. A cocycle c: G × X → A for T disperses if l i m g c ( g , · ) - α ( g ) = in measure for every map α: G → A. We prove that such a cocycle c does not disperse if and only if there exists a compact subgroup A₀ ⊂ A such that the composition θ ∘ c: G × X → A/A₀ of c with the quotient map θ: A → A/A₀ is trivial (i.e. cohomologous to a homomorphism η: G → A/A₀). This result...

Ergodic decomposition of quasi-invariant probability measures

Gernot GreschonigKlaus Schmidt — 2000

Colloquium Mathematicae

The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability...

Bivariate copulas: Transformations, asymmetry and measures of concordance

Sebastian FuchsKlaus D. Schmidt — 2014

Kybernetika

The present paper introduces a group of transformations on the collection of all bivariate copulas. This group contains an involution which is particularly useful since it provides (1) a criterion under which a given symmetric copula can be transformed into an asymmetric one and (2) a condition under which for a given copula the value of every measure of concordance is equal to zero. The group also contains a subgroup which is of particular interest since its four elements preserve symmetry, the...

Page 1

Download Results (CSV)