Un example d'algèbre de Banach commutative radicale a unité approchée bornée sans multiplicateur non trival.
Let d be a positive integer and μ a generalized Cantor measure satisfying , where , , with 0 < ρ < 1 and R an orthogonal transformation of . Then ⎧1 < p ≤ 2 ⇒ ⎨, , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’where , α’ is defined by and the constants D₁ and D₂ depend only on d and p.
Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [
Page 1