The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Random matroids

CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6  2.1. Notations and basic properties...........................................6  2.2. Gaussian coefficients.......................................................10  2.3. Projective geometries.......................................................11  2.4. Special classes................................................................143....

On the rank of random subsets of finite affine geometry

Wojciech Kordecki — 2000

Discussiones Mathematicae Graph Theory

The aim of the paper is to give an effective formula for the calculation of the probability that a random subset of an affine geometry AG(r-1,q) has rank r. Tables for the probabilities are given for small ranks. The expected time to the first moment at which a random subset of an affine geometry achieves the rank r is derived.

Exact Expectation and Variance of Minimal Basis of Random Matroids

Wojciech KordeckiAnna Lyczkowska-Hanćkowiak — 2013

Discussiones Mathematicae Graph Theory

We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).

Page 1

Download Results (CSV)