The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Effective bounds for Faltings’s delta function

Jay JorgensonJürg Kramer — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

In his seminal paper on arithmetic surfaces Faltings introduced a new invariant associated to compact Riemann surfaces X , nowadays called Faltings’s delta function and here denoted by δ Fal ( X ) . For a given compact Riemann surface X of genus g X = g , the invariant δ Fal ( X ) is roughly given as minus the logarithm of the distance with respect to the Weil-Petersson metric of the point in the moduli space g of genus g curves determined by X to its boundary g . In this paper we begin by revisiting a formula derived in [14],...

Page 1

Download Results (CSV)