Elements of a qualitative theory of Hamiltonian PDEs.
For a class of random dynamical systems which describe dissipative nonlinear PDEs perturbed by a bounded random kick-force, I propose a “direct proof” of the uniqueness of the stationary measure and exponential convergence of solutions to this measure, by showing that the transfer-operator, acting in the space of probability measures given the Kantorovich metric, defines a contraction of this space.
We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: The force is white in time and smooth in ; the potential is typical. We are concerned with the limiting, as , behaviour of solutions on long time-intervals , and with behaviour of these solutions under the double limit and . We show that these two limiting behaviours may be described in terms of solutions for the() which is a well posed semilinear...
We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.
Page 1