The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.
R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂
. Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂
for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity...
We derive closed formulas for the Thom polynomials of two families of second order Thom-Boardman singularities . The formulas are given as linear combinations of Schur polynomials, and all coefficients are nonnegative.
Download Results (CSV)