Constant mean curvature surfaces bounded by a circle.
We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.
We consider a unit speed timelike curve in Minkowski 4-space and denote the Frenet frame of by . We say that is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction of . In this work we study those helices where the function is constant and we give different characterizations of such curves.
Page 1