The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper is concerned with the Fréchet differentiability and operator convexity of the operator functions on sets of self-adjoint operators on finite-dimensional inner product spaces which are associated with real-valued functions of one or two variables. In Part I it is shown that if a real-valued function is L times continuously differentiable then the associated operator functions are L times Fréchet differentiable with continuous Fréchet derivatives. It is shown that the operator functions...
It is shown that every closed rotation and translation invariant subspace of or , , is of spectral synthesis, i.e. is spanned by the polynomial-exponential functions it contains. It is a classical problem to find those measures of compact support on with the following property: (P) The only function satisfying for all rigid motions of is the zero function. As an application of the above result a characterization of such measures is obtained in terms of their Fourier-Laplace transforms....
Download Results (CSV)