The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Similitude des multiples des formes d’Albert en caractéristique 2

Detlev W. HoffmannAhmed Laghribi — 2013

Bulletin de la Société Mathématique de France

Étant donnés F un corps commutatif de caractéristique 2 , γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes quadratiques de Pfister, ou γ 1 , γ 2 des k -formes bilinéaires de Pfister et π 1 , π 2 des formes quadratiques d’Albert ( γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes bilinéaires de Pfister avec la condition que γ i π i , i = 1 , 2 , soient anisotropes), alors on montre que γ 1 π 1 γ 2 π 2 I q k + 3 F ( I k + 3 F ) si et seulement si γ 1 π 1 est semblable à γ 2 π 2 . Un exemple montre que la condition de l’anisotropie est nécessaire...

Page 1

Download Results (CSV)