Hauteurs canoniques et modules de Drinfeld.
On montre ici comment un raffinement de la hauteur canonique sur les puissances tensorielles du module de Carlitz permet d'obtenir des résultats de finitude pour les systèmes d'équations de Fermat. Ces résultats améliorent ceux de [D2]. On établit également une majoration de la différence entre la hauteur canonique et la hauteur de Weil sur les modules de Drinfeld. On termine en indiquant une liste de problèmes ouverts analogues aux conjectures diophantiennes de Lang, Mazur, Lehmer, et au théorème...
Le pgcd de quantités de la forme et a été étudié dans différentes situations. Dans la première partie de ce texte nous prouverons que si et appartiennent à , le pgcd en question peut être borné indépendamment de dans de nombreux cas. Ceci répond en particulier à une question de J. Silverman. Dans la deuxième partie nous étudierons un problème analogue dans la situation des modules de Drinfeld.
Page 1