Sur les nœuds algébriques
In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.
Nous donnons un résumé des principaux résultats récents obtenus sur les nœuds algébriques.
Nous donnons une méthode pour calculer le nombre de cycles évanouissants d’une hypersurface complexe n’ayant pas nécessairement des singularités isolées.
The rate of moment convergence of sample sums was investigated by Chow (1988) (in case of real-valued random variables). In 2006, Rosalsky et al. introduced and investigated this concept for case random variable with Banach-valued (called complete convergence in mean of order ). In this paper, we give some new results of complete convergence in mean of order and its applications to strong laws of large numbers for double arrays of random variables taking values in Banach spaces.
Page 1