On the -convergence for multidimensional arrays of random variables.
On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.
For a sequence of blockwise -dependent random variables {≥ 1}, conditions are provided under which almost surely where {≥ 1} is a sequence of positive constants. The results are new even when . As special case, the Brunk-Chung strong law of large numbers is obtained for sequences of independent random variables. The current work also extends results of Móricz [ (1987) 709–715], and Gaposhkin [. (1994) 804–812]. The sharpness of the results is illustrated by examples.
This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.
Page 1