The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the Łojasiewicz exponent of the gradient of a polynomial function

Andrzej Lenarcik — 1999

Annales Polonici Mathematici

Let h = h α β X α Y β be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that | g r a d h ( x , y ) | c | ( x , y ) | λ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.

On the Łojasiewicz exponent of the gradient of a holomorphic function

Andrzej Lenarcik — 1998

Banach Center Publications

The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality | g r a d h ( x , y ) | c | ( x , y ) | λ holds near 0 C 2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

Page 1

Download Results (CSV)