On the Łojasiewicz exponent of the gradient of a holomorphic function
Banach Center Publications (1998)
- Volume: 44, Issue: 1, page 149-166
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topLenarcik, Andrzej. "On the Łojasiewicz exponent of the gradient of a holomorphic function." Banach Center Publications 44.1 (1998): 149-166. <http://eudml.org/doc/208877>.
@article{Lenarcik1998,
abstract = {The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality $|grad h(x,y)| ≥ c|(x,y)|^λ$ holds near $0 ∈ C^2$ for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.},
author = {Lenarcik, Andrzej},
journal = {Banach Center Publications},
keywords = {Ł ojasiewicz exponent; Newton diagram},
language = {eng},
number = {1},
pages = {149-166},
title = {On the Łojasiewicz exponent of the gradient of a holomorphic function},
url = {http://eudml.org/doc/208877},
volume = {44},
year = {1998},
}
TY - JOUR
AU - Lenarcik, Andrzej
TI - On the Łojasiewicz exponent of the gradient of a holomorphic function
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 149
EP - 166
AB - The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality $|grad h(x,y)| ≥ c|(x,y)|^λ$ holds near $0 ∈ C^2$ for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.
LA - eng
KW - Ł ojasiewicz exponent; Newton diagram
UR - http://eudml.org/doc/208877
ER -
References
top- [BŁ] J. Bochnak and S. Łojasiewicz, A converse of the Kuiper-Kuo theorem, in: Proceedings of Liverpool Singularities-Symposium I, Lecture Notes in Math. 192, Springer, Berlin, 1971, 254-261. Zbl0221.58002
- [BK] E. Brieskorn and H. Knörer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981.
- [ChK1] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, Banach Center Publ. 20, PWN-Polish Science Publishers, Warszawa, 1988, 139-146. Zbl0674.32004
- [ChK2] J. Chądzyński and T. Krasiński, Resultant and the Łojasiewicz exponent, Ann. Polon. Math. 61 (1995), 95-100. Zbl0833.14003
- [Fu] T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), 1169-1183. Zbl0737.58001
- [Kou] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
- [Kuch1] W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166. Zbl0594.58008
- [Kuch2] W. Kucharz, Newton polygons and topological determinancy of analytic germs, Period. Math. Hungar. 22 (1991), 129-132. Zbl0743.57019
- [Kuip] N. H. Kuiper, -equivalence of functions near isolated critical points, in: Symposium on Infinite-Dimensional Topology, R. D. Anderson (ed.), Ann. of Math. Studies 69, Princeton Univ. Press, Princeton, 1972, 199-218.
- [K] T. C. Kuo, On sufficiency of jets of potential functions, Topology 8 (1969), 167-171. Zbl0183.04601
- [KL] T. C. Kuo and Y. C. Lu, On analytic function germ of two complex variables, Topology 16 (1977), 299-310. Zbl0378.32001
- [LJT] M. Lejeune-Jalabert and B. Teissier, Cloture integral des idéaux et equisingularité, Centre Math. École Polytechnique, Paris, 1974.
- [Li] B. Lichtin, Estimation of Łojasiewicz exponent and Newton polygons, Invent. Math. 64 (1981), 417-429. Zbl0556.32003
- [LCh] Y. C. Lu and S. S. Chang, On sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880.
- [Ł] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.
- [Pł1] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262. Zbl0578.32013
- [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of , Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012
- [Te] B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292. Zbl0446.32002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.