On the Łojasiewicz exponent of the gradient of a holomorphic function

Andrzej Lenarcik

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 149-166
  • ISSN: 0137-6934

Abstract

top
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality | g r a d h ( x , y ) | c | ( x , y ) | λ holds near 0 C 2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

How to cite

top

Lenarcik, Andrzej. "On the Łojasiewicz exponent of the gradient of a holomorphic function." Banach Center Publications 44.1 (1998): 149-166. <http://eudml.org/doc/208877>.

@article{Lenarcik1998,
abstract = {The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality $|grad h(x,y)| ≥ c|(x,y)|^λ$ holds near $0 ∈ C^2$ for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.},
author = {Lenarcik, Andrzej},
journal = {Banach Center Publications},
keywords = {Ł ojasiewicz exponent; Newton diagram},
language = {eng},
number = {1},
pages = {149-166},
title = {On the Łojasiewicz exponent of the gradient of a holomorphic function},
url = {http://eudml.org/doc/208877},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Lenarcik, Andrzej
TI - On the Łojasiewicz exponent of the gradient of a holomorphic function
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 149
EP - 166
AB - The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality $|grad h(x,y)| ≥ c|(x,y)|^λ$ holds near $0 ∈ C^2$ for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.
LA - eng
KW - Ł ojasiewicz exponent; Newton diagram
UR - http://eudml.org/doc/208877
ER -

References

top
  1. [BŁ] J. Bochnak and S. Łojasiewicz, A converse of the Kuiper-Kuo theorem, in: Proceedings of Liverpool Singularities-Symposium I, Lecture Notes in Math. 192, Springer, Berlin, 1971, 254-261. Zbl0221.58002
  2. [BK] E. Brieskorn and H. Knörer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981. 
  3. [ChK1] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, Banach Center Publ. 20, PWN-Polish Science Publishers, Warszawa, 1988, 139-146. Zbl0674.32004
  4. [ChK2] J. Chądzyński and T. Krasiński, Resultant and the Łojasiewicz exponent, Ann. Polon. Math. 61 (1995), 95-100. Zbl0833.14003
  5. [Fu] T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), 1169-1183. Zbl0737.58001
  6. [Kou] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31. 
  7. [Kuch1] W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166. Zbl0594.58008
  8. [Kuch2] W. Kucharz, Newton polygons and topological determinancy of analytic germs, Period. Math. Hungar. 22 (1991), 129-132. Zbl0743.57019
  9. [Kuip] N. H. Kuiper, C 1 -equivalence of functions near isolated critical points, in: Symposium on Infinite-Dimensional Topology, R. D. Anderson (ed.), Ann. of Math. Studies 69, Princeton Univ. Press, Princeton, 1972, 199-218. 
  10. [K] T. C. Kuo, On C 0 sufficiency of jets of potential functions, Topology 8 (1969), 167-171. Zbl0183.04601
  11. [KL] T. C. Kuo and Y. C. Lu, On analytic function germ of two complex variables, Topology 16 (1977), 299-310. Zbl0378.32001
  12. [LJT] M. Lejeune-Jalabert and B. Teissier, Cloture integral des idéaux et equisingularité, Centre Math. École Polytechnique, Paris, 1974. 
  13. [Li] B. Lichtin, Estimation of Łojasiewicz exponent and Newton polygons, Invent. Math. 64 (1981), 417-429. Zbl0556.32003
  14. [LCh] Y. C. Lu and S. S. Chang, On C 0 sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880. 
  15. [Ł] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965. 
  16. [Pł1] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262. Zbl0578.32013
  17. [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C 2 , Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012
  18. [Te] B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292. Zbl0446.32002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.