On the Łojasiewicz exponent of the gradient of a polynomial function
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 3, page 211-239
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topAndrzej Lenarcik. "On the Łojasiewicz exponent of the gradient of a polynomial function." Annales Polonici Mathematici 71.3 (1999): 211-239. <http://eudml.org/doc/262851>.
@article{AndrzejLenarcik1999,
abstract = {Let $h = ∑ h_\{αβ\} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.},
author = {Andrzej Lenarcik},
journal = {Annales Polonici Mathematici},
keywords = {polynomial mapping; Łojasiewicz exponent; Newton diagram; Newton polygon},
language = {eng},
number = {3},
pages = {211-239},
title = {On the Łojasiewicz exponent of the gradient of a polynomial function},
url = {http://eudml.org/doc/262851},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Andrzej Lenarcik
TI - On the Łojasiewicz exponent of the gradient of a polynomial function
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 211
EP - 239
AB - Let $h = ∑ h_{αβ} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.
LA - eng
KW - polynomial mapping; Łojasiewicz exponent; Newton diagram; Newton polygon
UR - http://eudml.org/doc/262851
ER -
References
top- [A] M. Artin, On the solution of analytic equations, Invent. Math. 5 (1968), 277-291. Zbl0172.05301
- [BK] E. Brieskorn und H. Knörrer, Ebene algebraische Kurven, Birkhäuser, 1981.
- [CN-H] P. Cassou-Noguès et Há Huy Vui, Sur le nombre de Łojasiewicz à l'infini d'un polynôme, Ann. Polon. Math. 62 (1995), 23-44.
- [ChK1] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160.
- [ChK2] J. Chądzyński and T. Krasiński, On the Łojasiewicz exponent at infinity for polynomial mappings of ℂ² into ℂ² and components of polynomial automorphisms of ℂ², Ann. Polon. Math. 57 (1992), 291-302. Zbl0791.14004
- [L] A. Lenarcik, On the Łojasiewicz exponent of the gradient of a holomorphic function, in: Singularities Symposium - Łojasiewicz 70, Banach Center Publ. 44, Inst. Math., Polish Acad. Sci., Warszawa, 1998, 149-166. Zbl0924.32007
- [Pł1] A. Płoski, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), 297-309. Zbl0584.32006
- [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012
- [W] R. Walker, Algebraic Curves, Princeton Univ. Press, 1950. Zbl0039.37701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.