On the Łojasiewicz exponent of the gradient of a polynomial function

Andrzej Lenarcik

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 211-239
  • ISSN: 0066-2216

Abstract

top
Let h = h α β X α Y β be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that | g r a d h ( x , y ) | c | ( x , y ) | λ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.

How to cite

top

Andrzej Lenarcik. "On the Łojasiewicz exponent of the gradient of a polynomial function." Annales Polonici Mathematici 71.3 (1999): 211-239. <http://eudml.org/doc/262851>.

@article{AndrzejLenarcik1999,
abstract = {Let $h = ∑ h_\{αβ\} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.},
author = {Andrzej Lenarcik},
journal = {Annales Polonici Mathematici},
keywords = {polynomial mapping; Łojasiewicz exponent; Newton diagram; Newton polygon},
language = {eng},
number = {3},
pages = {211-239},
title = {On the Łojasiewicz exponent of the gradient of a polynomial function},
url = {http://eudml.org/doc/262851},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Andrzej Lenarcik
TI - On the Łojasiewicz exponent of the gradient of a polynomial function
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 211
EP - 239
AB - Let $h = ∑ h_{αβ} X^αY^β$ be a polynomial with complex coefficients. The Łojasiewicz exponent of the gradient of h at infinity is the least upper bound of the set of all real λ such that $|grad h(x,y)| ≥ c|(x,y)|^λ$ in a neighbourhood of infinity in ℂ², for c > 0. We estimate this quantity in terms of the Newton diagram of h. Equality is obtained in the nondegenerate case.
LA - eng
KW - polynomial mapping; Łojasiewicz exponent; Newton diagram; Newton polygon
UR - http://eudml.org/doc/262851
ER -

References

top
  1. [A] M. Artin, On the solution of analytic equations, Invent. Math. 5 (1968), 277-291. Zbl0172.05301
  2. [BK] E. Brieskorn und H. Knörrer, Ebene algebraische Kurven, Birkhäuser, 1981. 
  3. [CN-H] P. Cassou-Noguès et Há Huy Vui, Sur le nombre de Łojasiewicz à l'infini d'un polynôme, Ann. Polon. Math. 62 (1995), 23-44. 
  4. [ChK1] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160. 
  5. [ChK2] J. Chądzyński and T. Krasiński, On the Łojasiewicz exponent at infinity for polynomial mappings of ℂ² into ℂ² and components of polynomial automorphisms of ℂ², Ann. Polon. Math. 57 (1992), 291-302. Zbl0791.14004
  6. [L] A. Lenarcik, On the Łojasiewicz exponent of the gradient of a holomorphic function, in: Singularities Symposium - Łojasiewicz 70, Banach Center Publ. 44, Inst. Math., Polish Acad. Sci., Warszawa, 1998, 149-166. Zbl0924.32007
  7. [Pł1] A. Płoski, On the growth of proper polynomial mappings, Ann. Polon. Math. 45 (1985), 297-309. Zbl0584.32006
  8. [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281. Zbl0764.32012
  9. [W] R. Walker, Algebraic Curves, Princeton Univ. Press, 1950. Zbl0039.37701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.